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Abstract 
High-resolution population data play a crucial role in modern decision-making processes. 

However, to comply with data privacy and statistical confidentiality requirements, 

population datasets are often spatially aggregated and released at relatively coarse spatial 

and/or temporal scales. This practice significantly limits data usability, prompting the 

scientific community to develop methods that enable temporal population estimation for 

areas smaller than the original reporting units. Existing disaggregation approaches rely on 

explicit methods based on spatial disaggregation techniques which often lack reusability 

and require extensive preprocessing and strong data manipulation skills. The research 

proposed in this thesis addresses these limitations by introducing the Population 

Disaggregation Ontology model (POPDO), model that semantically defines the 

disaggregation process using Semantic Web technologies. POPDO is an ontology built 

upon domain and task ontologies, designed to support automated, flexible and reusable 

spatiotemporal population disaggregation through semantic descriptions of the process 

workflow. The model adopts three-layer model architecture, POPDOd, POPDOr and 

POPDOp, which together facilitate a four-phase disaggregation process: temporal 

population data adjustment, weight computation, disaggregation and aggregation accross 

arbitrary spatial units. These layers encapsulate domain-relevant concepts and organize 

them into semantically coherent groups. While POPDOd and POPDOp define data 

domain concepts and process descriptions, POPDOr functions as an intermediary layer 

specifying the roles of domain data within the disaggregation method. Testing the ontology 

on real world case study proves POPDO ontology to be applicable for population 

disaggregation and highlights its potential as a viable alternative to traditional 

disaggregation approaches. In an era of increasing availability of semantically described 

geospatial and statistical data, the POPDO ontology provides a missing piece that enables 

more effective and efficient use of population disaggregation methods. 
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Sažetak 
Podaci o stanovništvu visoke prostorne razlučivosti imaju ključnu ulogu u suvremenim 

procesima donošenja odluka. Kako bi se ispunili zahtjevi zaštite osobnih podataka i 

statističke povjerljivosti, skupovi podataka o stanovništvu često se prostorno agregiraju i 

objavljuju na relativno grubim prostornim i/ili vremenskim razinama. Takva praksa 

značajno ograničava iskoristivost podataka, što potiče znanstvenu zajednicu na razvoj 

metoda koje omogućuju vremensku procjenu prostorne razdiobe stanovništva za područja 

manja od izvornih referentnih jedinica. Postojeći pristupi disagregaciji uglavnom se 

oslanjaju na eksplicitne metode temeljene na tehnikama prostorne disagregacije, koje često 

imaju ograničenu mogućnost ponovne upotrebe te zahtijevaju napredne vještine obrade 

podataka. Istraživanje predstavljeno u ovoj disertaciji doprinosi navedenim ograničenjima 

uvođenjem ontološkog modela za prostorno vremensku disagregaciju podataka o 

stanovništvu (POPDO), koji semantički opisuje proces disagregacije koristeći tehnologije 

Semantičkog weba. POPDO je ontologija izgrađena na domenskim i procesnim 

ontologijama, osmišljena da podrži automatiziranu, fleksibilnu i ponovno upotrebljivu 

prostorno-vremensku disagregaciju podataka o stanovništvu putem semantičkih opisa 

izvođenja procesa. Model se temelji na troslojnoj arhitekturi, POPDOd, POPDOr i 

POPDOp slojevima koji zajednički omogućuje provedbu procesa disagregacije kroz četiri 

faze: vremensko usklađivanje podataka o stanovništvu, određivanje prostornih težina, 

disagregaciju te agregaciju na proizvoljne prostorne jedinice. Predloženi slojevi obuhvaćaju 

koncepte relevantne za domenu disagregacije i organiziraju ih u semantički koherentne 

skupine. Dok POPDOd i POPDOp opisuju koncepte domene podataka i procesa, 

POPDOr djeluje kao međusloj koji domenskim podacima dodjeljuje uloge unutar metode 

disagregacije. Rezultati testiranja ontologije na primjeru disagregacijske metode pokazali 

su da je POPDO model primjenjiv za disagregaciju populacije te su istaknuli njegov 

potencijal kao održivu alternativu tradicionalnim pristupima disagregaciji. U razdoblju sve 

veće dostupnosti semantički opisanih geoprostornih i statističkih podataka, POPDO 

ontologija predstavlja nužnu sponu koja će omogućiti učinkovitiju i djelotvorniju primjenu 

metoda disagregacije na podatke o stanovništvu.
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Addressing complex human–environment interactions, such as the allocation of food and 

medical supplies, transportation planning, risk prevention, and the management of natural 

hazards, requires detailed, time-specific information on the geographical distribution of 

populations (Galvani et al., 2016; Calka et al., 2017). However, in order to meet data 

privacy and statistical confidentiality requirements, population datasets are typically 

spatially aggregated and disseminated at relatively coarse spatial and/or temporal 

resolutions (Batsaris & Zafeirelli, 2023). Consequently, high-resolution population data 

are often unavailable and are frequently derived through spatial and temporal 

disaggregation of existing datasets. 

The disaggregation of population data is experiencing constant changes, as researchers 

seek to develop improved models that more accurately represent the spatial and temporal 

distribution of population. The advent of the digital technologies has significantly 

transformed the methodologies employed in this domain, leading to substantial changes 

in disaggregation practices. For instance, computational processes are now executed 

within digital environments, enabling faster and more efficient performance. Modelling 

techniques have expanded, allowing for the implementation of more sophisticated and 

comprehensive disaggregation strategies. Moreover, the acquisition and dissemination of 

a wide range of spatially referenced datasets capable of indicating potential 

concentrations of population has become increasingly feasible. Collectively, these 

developments underscore the critical role of technology in the disaggregation process and 

prompt further consideration of how its full potential might be most effectively realised. 

The growing demand for user-defined resolution of population data, coupled with the 

increasing availability of spatial datasets suitable for disaggregation, highlights the need 

for an automated and flexible solution capable of supporting a range of disaggregation 

approaches. To meet these requirements, such a solution must be adaptable rather than 

static, not bound to a specific technological platform, and able to overcome the limitations 

posed by heterogeneous data sources, e.g. such as the integration of varying data 

structures. Furthermore, it should be capable of modelling the disaggregation process as a 

structured sequence of steps. This would enable broader applicability, enhance the 

replicability of results, reduce the need for manual data preprocessing, and allow full 
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automation of the process from start to finish. One promising approach involves the 

development of a conceptual model grounded in ontology, drawing upon the advantages 

of semantic data integration and the extraction of implicit knowledge within the domain 

of spatial disaggregation. A model of this kind appears well-suited to fulfilling the outlined 

requirements, and its development therefore constitutes the principal focus of this 

research. 

1.1 Relevance and Limitations of Population Data 

The wide applicability of population data stems from the complex and multilayered nature 

of human–environment interactions, where detailed demographic information supports 

more informed and effective decision-making. For instance, planning of sustainable and 

compact urban areas requires local amenities to be in a walking-distance from residents, 

so availability of e.g. block/district population data is needed to assess suitability of urban 

spaces and propose optimal locations for new amenities (Fina et al., 2022; Jama et al., 

2025; Telega et al., 2021). Similarly, effective risk management in both urban and rural 

contexts, such as the mitigation of landslides, rockfalls, or air pollution, relies heavily on 

detailed population data. In the event of a hazard, which can occur on a specific section of 

an urban area, population data at the level of an entire statistical unit is often inadequate. 

Targeted prevention, impact assessment and response planning require knowledge of a 

number of people living in affected zone (Li, 2022). The importance of high-resolution 

population data extends beyond urban planning, with significant relevance to diverse 

domains. In scientific research, e.g. in observational health studies and epidemiology, more 

accurate spatial population data enables precise calculation of disease rates and risk 

assessments, thereby reducing biases introduced by outdated or overly aggregated 

datasets (Fecht et al., 2020; Wang & Wang, 2024). In commercial sectors, such as 

marketing and retail, fine-scale demographic information enhances the effectiveness of 

recommendation systems by enabling personalised promotions and the tailoring of 

products or services to the actual location of target populations. This spatially informed 

approach contributes to more context-aware marketing strategies and can ultimately 

improve sales performance (Shili & Sohaib, 2025). 
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In the European Union, the relevance of population data is formally recognized in 

legislation, and it is subject to special regulatory treatment. According to EU 

Implementing Regulation 2023/138, official population data, classified as statistical data, 

is designated as high-value data, reflecting its capacity to generate anticipated social and 

economic benefits when made accessible for reuse (European Commission, 2023). 

Consequently, the regulation stipulates that such data must be disseminated at the highest 

possible level of granularity, while simultaneously ensuring compliance with legal 

safeguards, including the protection of personal data This classification underscores the 

critical importance of population data in supporting evidence-based policymaking and 

strategic planning, which is why the European Commission mandates it to be provided as 

open data, freely accessible and free from restrictive licensing (European Parliament, 

2019). 

While this legal framework has undoubtedly affirmed the importance of official granular 

population data and enhanced its availability across Europe, its practical usability remains 

limited. Constraints such as data privacy regulations, political considerations, and 

underdeveloped data infrastructures often result in population data being aggregated to 

statistical or administrative spatial units. This level of aggregation impedes its applicability, 

as decision-making processes frequently concern smaller geographic areas rather than 

entire administrative units for which data is typically provided (Stevens et al., 2015). 

Moreover, changes in administrative boundaries over time compromise the comparability 

of statistical data, posing a significant barrier to longitudinal analyses in which population 

data plays a crucial role (Bernard et al., 2022).  

Bridging the gap between the limitations of existing population data and the requirements 

of practical applications necessitates a solution capable of delivering user-defined levels 

of granularity. Such a solution would enable more responsive and better-informed 

decision-making by generating data that more accurately reflects the dynamic 

interactions between populations and their environments. 

1.2 Approaches to Process Modelling 

Spatiotemporal disaggregation methods may be conceptualised as a sequence of steps, a 

process involving the integration of diverse input datasets to generate a specific output. 
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Two potential approaches can be considered for modelling such a process: Geographic 

Information Systems (GIS) and ontology-based modelling. Given that the primary 

requirement for a modelling approach is to enable the automated execution of varied 

disaggregation workflows involving heterogeneous spatial data, the chosen framework 

must be sufficiently flexible to accommodate multiple input sources and remain method-

agnostic in order to support a broad spectrum of disaggregation techniques. 

GIS systems are the most widely used approach for geospatial data integration, as they 

are specifically designed to perform complex spatial analyses (Oliveira et al., 2024; 

Wieczorek & Delmerico, 2010). However, GIS data model is syntactic and schema-based, 

which introduces notable constraints when dynamic or adaptive applications are required. 

While GIS tools can be employed for population disaggregation, several limitations hinder 

their broader applicability. Firstly, GIS workflows are typically constructed manually or 

rely on predefined scripts. Although this offers a degree of flexibility, such workflows are 

inherently task-specific and static, and any methodological modification requires 

reconfiguration or rewriting of the script. Secondly, employed scripts are often tightly 

coupled with specific data structures, which significantly restricts their reusability when 

datasets vary in format. Thirdly, while GIS excels in managing spatial data, the integration 

of non-spatial datasets is frequently cumbersome, often requiring ad hoc solutions that 

undermine the practicality of seamless data integration. Finally, GIS systems do not 

natively support formal logic or reasoning capabilities, which limits their ability to validate 

processing steps or infer implicit relationships, such as enforcing value preserving 

constraints. As a result, the establishment of contextual relationships between datasets 

and the interpretation of metadata generally rely on manual intervention by the human 

operator. 

The ontology-based approach provides a straightforward yet robust data modelling 

framework that facilitates the integration and representation of heterogeneous datasets 

and their interrelationships (Sun et al., 2019). By focusing on data semantics rather than 

data structure, it offers a means of overcoming heterogeneousness across diverse data 

sources. Unlike GIS, which conducts spatial analysis through the quantitative 

representation of real-world phenomena using geographic coordinates, ontologies employ 
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reasoning over qualitative descriptions to draw inferences (King, 2019). This allows 

spatial relationships to be captured semantically within the model, enabling spatial 

analysis to be executed through ontology-supporting tools. The simplicity and adaptability 

of the ontology data model allow for the seamless integration of new datasets without 

requiring modification of the existing structure. Furthermore, qualitative reasoning 

enables a broad range of inferencing possibilities, which may be aligned with different 

methodological requirements. Semantic definitions embedded in the model also support 

the extraction of implicit knowledge directly from the data, reducing reliance on user 

interpretation. While ontology reasoning relies on query languages that do not inherently 

support control flow or scripting, such procedural logic can be provided by linking graph 

database with external technologies. Taken together, these advantages position the 

ontology-based approach as a compelling alternative to GIS for modelling diverse data 

inputs across a variety of population disaggregation methodologies. 

1.3 Objectives and Hypotheses 

Population disaggregation is heavily grounded in the spatial component of the data which 

is why the focus of scientific community in the domain is pointed at developing methods 

that better describe spatial correlation of population-indicating data and can produce 

more accurate population distribution. While such research undoubtedly enhances 

theoretical foundations of population disaggregation, Flasse et al., (2021) argue that 

practical tools for disaggregation are needed to ease the access to more detailed population 

data. Furthermore, the increasing demand for timely user-defined granulation of 

population data coupled with the increasing availability of relevant datasets for 

disaggregation requires automated solution that minimises human intervention and offers 

human independent processing. De Meester et al. (2020) associate this with the benefits 

of semantic web. Semantic web applications are becoming vital tools for decision making, 

with semantic descriptions which are crucial for their automated execution (de Souza 

Neto et al., 2018; Bednar et al., 2024). These considerations underscore the need to 

identify a viable solution, which forms the principal goal of this research: 
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“to develop an ontological model for flexible and automated spatiotemporal 

disaggregation of population data onto arbitrary spatial tessellations using 

semantic web technologies.” 

Achieving this goal is closely tied to four specific objectives that will ensure sustainability 

of the proposed solution: 

“Define key concepts and spatial relations in spatial disaggregation methods.” 

Spatial disaggregation methods vary in their approaches to generating disaggregated data; 

however, they all share a common underlying principle. By generalising the process and 

focusing on the key components and spatial relationships, the proposed model will possess 

sufficient flexibility to accommodate a range of disaggregation techniques. 

“Ensure interoperability of the proposed ontological model.” 

Semantic data modelling is well established within the data domain, with numerous widely 

adopted standards for describing various types of data. Additionally, process modelling 

through ontologies has recently gained traction, with several ontology models now 

available. The research community strongly advocates for the development of models that 

build upon existing knowledge rather than creating isolated, standalone solutions, as this 

approach ensures broader applicability and enhances the long-term sustainability of the 

model. 

“Develop ontology model for modelling spatial disaggregation procedures.” 

Population disaggregation is a methodological process comprising several sequential steps 

required to achieve the desired outcome. Although ontology models typically offer a static 

representation of the domain through key concepts and relationships, the intention here 

is to utilise these models to describe the procedural workflow within a static framework. 

In doing so, the model will remain consistent with the principles of ontology while 

effectively supporting process of disaggregation. 
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“Test the developed disaggregation model.” 

The development of an ontology model is an iterative process that progressively uncovers 

modelling limitations at each stage. Addressing these limitations through successive 

testing phases ensures that the model is suitably robust to support flexible and automated 

spatiotemporal disaggregation. 

The proposed ontology model aims to address the challenge of providing population data 

at user-defined spatiotemporal granularities. The development of this model is anticipated 

to make significant contributions to both theoretical and practical domains. Theoretically, 

the research will extend the existing knowledge base by offering semantic descriptions of 

the procedures involved in spatiotemporal disaggregation of population data, which are 

fundamental for the advancement of AI-driven automated solutions. Practically, the 

research is expected to facilitate the automation of population data disaggregation across 

arbitrary spatial tessellations through the utilisation of semantics embedded within the 

ontological framework. 

The research objective is founded on the premise that semantic web technologies provide 

the necessary tools to facilitate automated population disaggregation. To test this premise, 

two hypotheses have been formulated: 

1. Methods of spatial disaggregation for population data can be conceptually 

modelled as procedures in an ontological model, where procedures, 

spatial relations, and key components, such as input data, parameters, 

and outputs — are defined. 

2. Modelling spatial disaggregation methods as ontological procedures, it is 

possible to automate the disaggregation of population data. 

1.4 Out of Scope 

The main goal of this research, along with its specific objectives, centres on establishing a 

proof of concept for an ontology model designed to support spatiotemporal population 

disaggregation. Consequently, the focus is not on developing novel disaggregation 

methodology to enhance accuracy, but rather on creating a broadly applicable semantic 
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model capable of facilitating automated spatiotemporal population disaggregation. 

Accordingly, the model does not demonstrate the disaggregation of population data itself 

but instead illustrates how the disaggregation process can be represented within a 

semantic web environment. 

The proposed ontology model is method-agnostic and intended to support a range of 

population disaggregation approaches. Given that disaggregation methods differ in both 

the number and type of datasets required, this research aims to deliver a universal solution 

capable of accommodating a broad spectrum of methodologies and input data types. 

Accordingly, the focus is placed on the development of a generic, high-level model that is 

widely applicable and not restricted to any single disaggregation technique. However, to 

demonstrate proof of concept, the model will be tailored to the requirements of a simple 

methodological approach and evaluated within that context. 

The proposed model must be capable of incorporating a temporal component to enable 

the estimation of population figures beyond the reference timestamp. However, to ensure 

broad applicability, time will be treated as an attribute of spatial data rather than an 

integral element of the data structure. This approach will allow the disaggregation model 

to produce meaningful results without necessitating high temporal resolution in the input 

data. In doing so, the model will remain universally applicable and functional even in 

contexts where detailed spatiotemporal datasets are not readily available. On the other 

side, the model will not consider changes of spatial units in time and will consider them 

static for the referent timestamp of population data. 

The model will be tested using publicly available data in its original, unaltered form. 

Rather than integrating the data into the model itself, each dataset will be treated as an 

independent source, accessed dynamically through queries as needed. This approach 

preserves the original data structure, minimises preprocessing requirements, and 

facilitates the reuse of existing semantically described datasets. Furthermore, for the sake 

of simplicity, the model will treat all data as static and will not include mechanisms for 

harvesting dynamic data from data providers. 
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1.5 Thesis Structure 

This thesis is structured in five chapters, as outlined below: 

Chapter 2 provides the research background, introducing the key concepts within the 

domain. It examines the geospatial characteristics of population data that make the 

application of spatial disaggregation methods possible. The chapter also includes a 

comprehensive literature review of existing population disaggregation techniques, 

highlights their potential for procedural modelling. 

Chapter 3 focuses on Semantic Web technologies, particularly the use of ontologies. It 

contrasts the Semantic Web with the traditional web of documents, outlining the 

advantages of the former. The chapter also introduces the principal technologies of the 

Semantic Web stack and offers an in-depth explanation of the concept of ontologies, 

including a taxonomy of ontology types and a review of existing domain ontologies 

relevant to this research. This chapter provides state of the art in population 

disaggregation based on ontology approach and gives an overview of ontologies for 

specific parts of the disaggregation process. 

Chapter 4 details the steps involved in ontology development. It begins with an analysis 

of user requirements that guide the ontology design. This is followed by the development 

process itself, where the different levels of modelling are described. 

Chapter 5 presents the testing and evaluation of the proposed methodology. It describes 

the data sources and preprocessing steps, and it illustrates the execution of the 

disaggregation process on a concrete disaggregation method. This chapter delivers results 

and enables the validation of various components of the model. 

Chapter 6 offers a discussion on the proposed model, examining its benefits and 

limitations. It also assesses whether the developed model has contributed to the 

achievement of the research objective based on the hypotheses set out.  

Finally, Chapter 7 outlines main conclusions of the proposed disaggregation ontology and 

provides directions for future research. 
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This chapter aligns proposed research with the foundational spatiotemporal 

disaggregation concepts by providing review of relevant scientific achievements in field 

of population disaggregation. It begins with an overview of the theoretical concepts related 

to population data and the digital representation of geospatial information, introducing the 

topic and its foundations. Following, it examines common methods for spatial and 

temporal disaggregation, as well as existing practical implementations. Together, these 

topics establish the background for the conceptual model of spatiotemporal population 

disaggregation developed in this research. 

2.1 Concept Overview 

2.1.1 Geospatial Data in Digital Environment 

When perceiving and describing the real-world, people tend to parse it into a set of 

discreet entities rather than describing it as a continuous space. This tendency may have 

evolutionary roots as describing location and properties of specific objects, such as food 

or predators, likely had greater survival value back in history (Peuquet et al., 1998). It may 

also explain why natural language is generally better suited to describing discreet objects 

than continuous fields in geography (Cova & Goodchild, 2002). 

In GIS, the two primary geographical data models for representing real-world phenomena 

are the object and field models. These are not inherent properties of the phenomena 

themselves, but rather conceptual perspectives adopted by the user for a specific 

application (Cova, 2017). While most geographic entities are typically perceived as either 

objects or fields, this dichotomy is not absolute. For example, a person may be treated as 

an individual object, but when considered as part of a population, the discrete object 

characteristic disappears, and the person becomes a value within a population density 

field (Cova & Goodchild, 2002). This illustrates that any geographic reality can be 

conceptualized using either model. However, because natural language lacks the precision 

required for computational environments, the distinction between the concepts of object 

and field must be clearly defined before using geospatial data in a computer-based context 

(King, 2019).  

According to the field conceptualization, a geographic phenomenon is represented as a 

continuous surface whose values vary with location (Jacquez et al., 2000). Every point 
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within an infinitely dense space, a field, is associated with a value drawn from an attribute 

domain (e.g., temperature, elevation, moisture), making the representation inherently 

functional (Cova, 2017). For this reason, a field can be described as a single-valued 

function of space (Cova & Goodchild, 2002). Fields are particularly well suited for 

representing phenomena without clearly defined boundaries, instead exhibiting smooth 

or heterogeneous variation across space. This conceptualization brings several defining 

characteristics: values are theoretically available for every location, fields are spatially 

continuous and conceptually infinite, and the spatial frame of reference can be one-, two-

, three-, or four-dimensional (space and time). Attributes are tied to a specific domain 

(e.g., precipitation) and can be expressed using various measurement scales, including 

binary, nominal, ordinal, interval, and ratio (Cova & Goodchild, 2002). In practice, 

however, field representation in a digital environment must be approximate, as it is 

impossible to store values for every location (Goodchild, 1992). To address this, spatial 

tessellations, regular or irregular point networks, and contour representations are used to 

approximate continuous reality within finite storage (Cova & Goodchild, 2002). Missing 

values are then calculated from the stored approximation using spatial interpolation 

techniques. 

In the object conceptualization, the real world is viewed as composed of discrete, spatially 

distinct objects with precise and unbiased locations and extents (Kjenstad, 2006), like 

lakes and roads, which are distinct in their identity and attributes (Cova & Goodchild, 

2002). Smith & Mark (1998) categorize these objects based on their boundaries into 

three types: physical objects with clear cognitive boundaries, such as rivers and bridges; 

geographic objects, like bays and mountains, whose extents are partially tied to the 

physical world but also shaped by human delineation; and geopolitical objects, such as 

statistical and administrative units, which are purely product of human cognition. Based 

on boundary types, Smith & Mark (1998) further classify objects as fiat (human-defined) 

or bona fide (naturally defined). Regardless of boundary type, the clear demarcation of 

objects from their surroundings makes them well-suited for representation in GIS using 

common geometric forms such as points, lines, or polygons. 



Chapter 2  

14 

Due to factors such as personal data protection concerns or the focus on broader 

population trends rather than individuals, the field conceptualization is most commonly 

used in population studies. Typical outputs include choropleth maps or population density 

maps, where population values are aggregated and expressed for spatial units like 

enumeration areas, or grid cells. Because numerous spatial tessellations are used to create 

density and choropleth maps, these are considered discrete value fiat fields, where the 

values depend on the type and size of the spatial units employed. 

2.1.2 Population Data 

Although intuitively understood, the meaning of population data can sometimes be 

ambiguous, especially when compared to related terms such as demographic data. 

Demographic data refers to specific characteristics within a population, such as age, sex, 

or race (Nettleton, 2014), whereas population data encompasses broader statistical 

information about a group of people (Christen & Schnell, 2023), typically quantitative 

measures of the number of individuals within a given area (United Nations Department 

of Economic and Social Affairs, 2017). 

Population data is most often collected at the resolution of individual persons for 

administrative or operational purposes (Christen & Schnell, 2023). This means that a 

variety of characteristics are gathered and stored for each individual in the dataset. 

However, the dissemination of such highly detailed data is limited by several factors. 

These include underdeveloped data infrastructures that cannot support the distribution 

of detailed datasets (Comber & Zeng, 2022) as well as political manipulation of population 

information for specific agendas (Espey et al., 2025). More commonly, concerns over 

privacy and the risk of exposing sensitive personal information are cited as the primary 

barriers, since detailed data could jeopardize individuals' privacy and facilitate malicious 

use (Lin & Xiao, 2024; Lloyd et al., 2019; United Nations Department of Economic and 

Social Affairs, 2022). This barrier makes it challenging for data providers to meet the 

needs of public good while maintaining privacy of individual data which requires 

mechanisms to balance between the two. Aggregation of population data is a common 

approach to bridge this gap by providing data at a coarser level of detail than originally 

collected. 



Spatiotemporal Disaggregation of Population Data 

15 

Although population data is primarily statistical, its spatial component plays a significant 

role in shaping its interpretation and use. For instance, data contextualization relies 

heavily on the spatial extent of the data (Matthews & Parker, 2013; Raymer et al., 2019) 

or, in simple words, stating the number of people without spatial reference offers little 

value to the end user. Additionally, geographically aggregated data is directly influenced 

by the size and shape of the spatial units involved (Bernard et al., 2022; Briant et al., 

2010; Fendrich et al., 2022) and different spatial tessellations can lead to variations in 

the resulting aggregated data. This property is leveraged in gridded population products, 

where the arbitrary resolution of the grid structure helps preserve individual anonymity, 

supports higher spatial resolution in aggregated data, and mitigates issues related to 

modifiable spatial boundaries that hinder data comparability over time (Leyk et al., 2019; 

Monteiro et al., 2021; United Nations Department of Economic and Social Affairs, 

2021). On the other hand, the spatial component facilitates the integration of population 

data with other spatially referenced datasets and fosters the development of spatial 

demography, a statistical field that employs spatial techniques to better understand 

demographic processes across space (Raymer et al., 2019). 

Population data typically originates from official sources such as household sample 

surveys, administrative registers, and most commonly, population and housing censuses 

(Suharto, 2001; United Nations Department of Economic and Social Affairs, 2008) and 

is aggregated to administrative or statistical units to meet administration requirements 

(Christen & Schnell, 2023). While this is good enough for social applications, from spatial 

perspective such aggregation is misleading. Administrative or statistical boundaries often 

do not align with the physical discontinuities of the variables of interest, creating an 

illusion of uniform spatial distribution that is commonly visualized through quantitative 

choropleth maps (Lloyd et al., 2019). Nevertheless, such aggregated data serves as the 

foundation for many globally available datasets, such as WorldPop, which aim to produce 

more accurate and detailed representations of population distribution. 
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2.2 Spatial Population Disaggregation  

As a result of aggregation, population data is tied to fixed spatial boundaries. To address 

practical needs, it is often necessary to redistribute the population data more accurately 

across space.  

2.2.1 Population Disaggregation 

The spatial component of population data enables the use of spatial techniques for 

redistributing population counts. This process is known as spatial disaggregation and 

refers to reallocating spatially aggregated population data from coarse administrative 

units, source zones, into finer spatial units, target zoness, to better reflect spatial 

heterogeneity of human distribution (Figure 2.1). Spatial disaggregation relies on areal 

interpolation, a specialized form of spatial interpolation used to transfer data between 

different sets of spatial boundaries (Lam, 1983), commonly applied for data comparison 

or integration (Eicher & Brewer, 2001). Even though formally based on interpolation 

techniques, application role of areal interpolation and the fact that data values represent 

count, and not density, makes population redistribution considered as disaggregation 

rather than interpolation (King, 2019). 

s 

Figure 2.1 

Illustration of general principle of spatial disaggregation of population data from reference 

spatial unit to lower-level spatial units 

 

Areal interpolation methods used in the spatial disaggregation of population data depend 

on a weighting layer that guides how the population is distributed across target zones 



Spatiotemporal Disaggregation of Population Data 

17 

(Cheng et al., 2022; Stevens et al., 2015). Over time, new approaches to disaggregation 

created refined methods that resulted in more sensitive allocation procedures. The 

literature classifies these methods in various ways, often based on the types of inputs used 

to guide disaggregation. For instance, Qiu et al. (2022) distinguish between areal 

interpolation and dasymetric mapping, while Leyk et al. (2019) identify four categories: 

areal weighting techniques, dasymetric mapping, statistical methods, and hybrid 

approaches. Netrdová et al. (2020) divide methods into cartographic and geostatistical, 

Wu et al. (2005), as cited in Calka et al. (2016), separate them into areal interpolation 

and statistical modelling, and Comber & Zeng (2019) differentiate between methods that 

use ancillary data and those relying solely on source and target zone properties. Because 

many methods fit within the framework proposed by Comber & Zeng (2019), this 

classification is widely adopted (e.g. Sapena et al., 2022) and forms the basis for further 

discussion in this work. 

2.2.2 Areal Disaggregation Using Zone Spatial Characteristics 

This group of disaggregation methods is zone oriented, meaning they use characteristics 

of the spatial zones themselves to guide the redistribution process. These methods are 

rather simple, often used in lack of other informative geodata and based on the assumption 

of homogeneous distribution of population in the source zone (Sapena et al., 2022). The 

two fundamental approaches in this category are simple areal weighting and 

pycnophylactic interpolation. 

Simple areal weighting is the most straightforward disaggregation method. It redistributes 

population data based on the proportion of the overlapping area between each source zone 

and target zones (Sapena et al., 2022) (Figure 2.2). Because weights are derived from 

area shares, the method is inherently volume-preserving, meaning the sum of the 

disaggregated data across all target zones equals the original input count. The method 

needs no ancillary data and requires accurate boundary geometries only which makes it 

easily implemented in computer environment using polygon overlay operations (Comber 

& Zeng, 2019). As concluded by Goplerud (2016), in certain situations, such as 

transferring election results across changing statistical units, this method can provide good 

accuracy, with a mean absolute error of 2–3%. However, a key limitation is its assumption 
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of spatial homogeneity within target zones, which rarely holds true in practice (Monteiro 

et al., 2021). Nonetheless, when additional geospatial data is unavailable, simple areal 

weighting remains a practical and reasonable solution (Comber & Zeng, 2019). 

 

Figure 2.2 

Illustration of areal weighting disaggregation method approach 
 

Pycnophylactic interpolation differs from simple areal weighting but is considered a 

refinement of this volume-preserving approach (Qiu et al., 2022). The idea is to create 

smooth surface in the target zones, often raster cells, from counts in source zones, typically 

polygons (Tobler, 1979). It begins by applying volume-preserving areal weighting (like in 

previous method) to obtain initial values for the target zones. These values are then 

smoothed by replacing each with a weighted average of its nearest neighbours. After 

smoothing, the total values of the target zones are compared to the original source zone 

counts and adjusted to maintain volume preservation (Figure 2.3). The process is repeated 

until smooth surface with no sharp discontinuity in adjacent target zones is achieved. 

Number of iterations is not fixed, and the process usually ends when difference in values 

between two consecutive iterations is small enough (Monteiro et al., 2021). According to 

Comber & Zeng (2019) pycnophylactic interpolation is well-suited for creating surfaces 

from count data, but assumption of continuity, i.e. no sharp boundaries in the distribution 

may not always hold true, especially in cases where physical barriers like waterways or 

roads segment the area.  
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Figure 2.3 

Illustration of pycnophylactic disaggregation method approach 
 

Inconsistencies such as redistributing population into uninhabited areas, like bodies of 

water or forests, often arise when using earlier mentioned disaggregation methods, 

limiting their usefulness for detailed decision-making at sub-census levels (Stevens et al., 

2015). On the other hand, the increasing availability of Earth observation data, including 

nighttime lights, land cover, digital terrain models, and other geospatial datasets like 

addresses or land use classes, provides a wealth of variables that can help identify likely 

population locations and thus constrain the allocation process (Calka et al., 2016; Liu et 

al., 2023; Sapena et al., 2022; Ural et al., 2011; Weber et al., 2018). However, as Stevens 

et al. (2015) point out, effectively using this data to produce more accurate population 

distributions requires the development of more advanced disaggregation methods, which 

fall under the second category, methods that incorporate ancillary data. 

2.2.3 Areal Interpolation Using Ancillary Data 

The diversity of available ancillary data and the ways it is combined in the disaggregation 

process have led to a wide variety of disaggregation methods. Some authors (e.g. 

Cartagena-Colón et al., 2022; King, 2019; Mennis & Torrin, 2005; Netrdová et al., 

2020; Qiu et al., 2022) associate such methods exclusively with dasymetric mapping and 

distinguish between its various subtypes. In contrast, other authors, such as Stevens et al. 

(2015), Sapena et al. (2022), Leyk et al. (2019) and Comber & Zeng (2019) consider 

dasymetric mapping as just one of methods within this broad category. 
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Differences in how disaggregation methods are grouped often stem from varying 

interpretations of the term dasymetric mapping. As introduced by the Russian 

cartographer Tian-Shansky, dasymetric mapping aims to overcome the limitations of the 

homogeneity assumption in choropleth population maps by subdividing areas into smaller 

partitions where this assumption is more valid, typically using external data (Bielecka, 

2005). Different interpretations mainly arise from how ancillary data is applied and the 

nature of the resulting spatial units. For some authors, e.g. Qiu et al. (2022), any operation 

with ancillary data, mathematical or statistical, that can characterize its relationship with 

population and result in small areas with similar distribution patterns is considered 

dasymetric mapping. Conversely, Comber & Zeng (2019), and Sapena et al. (2022) 

consider a narrower definition, restricting dasymetric mapping to cases where ancillary 

data serves as spatial control to include or exclude areas from redistribution, while more 

complex methods, those that do not necessarily produce uniform population densities, are 

categorized as statistical or other approaches. These different views may be based on 

cartographic background of the term dasymetric which usually refers to general type of 

thematic map created using different methods (Eicher & Brewer, 2001). 

The literature suggests that practical disaggregation approaches often combine multiple 

methods to improve the accuracy of results (Cartagena-Colón et al., 2022; Hallot et al., 

2021; Stevens et al., 2015). To clearly differentiate between these approaches, methods 

using ancillary data will be explained following the classification proposed by Sapena et 

al. (2022); dasymetric mapping, statistical methods and hybrid methods. 

Dasymetric Mapping 

Mennis & Hultgren (2006a) describe dasymetric mapping as a method similar to areal 

interpolation as both involve transforming data from arbitrary source zones to different 

geometrically defined target zones. However, the key distinction lies in the use of ancillary 

data in dasymetric mapping, which helps characterize the relationship between population 

data and the target regions (Mennis & Hultgren, 2005), as well as the omission of a 

subsequent data reaggregation step to preferred spatial units in dasymetric mapping 

(Eicher & Brewer, 2001). According to Mennis (2003) dasymetric mapping combines 

areal weighting (based on intersection areas) with relative densities derived from ancillary 
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spatial classes to spatially redistribute population data. Šveda et al. (2024) state that this 

method yields high-quality results, as demonstrated by its successful applications in 

diverse fields such as tourism, accessibility assessment, and crisis management. In this 

approach, population redistribution is guided by weights derived from ancillary data, and 

based on how this data is utilized, the literature identifies three main types of dasymetric 

mapping. 

Binary Dasymetric Mapping 

Binary dasymetric mapping functions as a weighting mask that uses ancillary data to 

differentiate between populated and unpopulated areas (Comber & Zeng, 2022) (Figure 

2.4). Unpopulated regions are assigned a weight of zero and thus excluded from the 

disaggregation process, while the entire population is allocated to areas deemed populated 

with a weight of one (Su et al., 2010). A similar distinction can be made between urban 

and rural zones, where population density differences are obvious (Cromley et al., 2011). 

This method most commonly utilizes land use classes to identify urban spaces, though in 

some cases, expert knowledge or manually defined rules are applied (Monteiro et al., 

2021), which may affect the reliability of results. The simplicity of the binary mask 

approach facilitates easy implementation, and Qiu et al. (2022) note that it effectively 

addresses the common issue of underestimating population in urban areas and 

overestimating it in rural areas.  

 

Figure 2.4 

Illustration of binary dasymetric disaggregation method approach 
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Multi-class dasymetric mapping 

The simplicity of the previous method stems from its binary division of the source zone, 

which often does not reflect real-world complexity. Multi-class dasymetric mapping 

improves on this by introducing multiple subzones, each assigned a different weight (Su 

et al., 2010) (Figure 2.5). These weighted gradations, rather than just 0 and 1, tend to 

yield more accurate population redistribution by incorporating the assumption that more 

urbanized areas have higher population densities, and less urbanized areas have lower 

densities (Qiu et al., 2022). Subzones are typically defined by the researcher based on 

local knowledge or extracted from land cover data (Qiu et al., 2022; Sapena et al., 2022). 

However, the weights assigned to each subzone are provided by the operator and often 

expressed as percentages that preserve the total population volume (Su et al., 2010). 

Ultimately, the total population is allocated across the subzones according to assigned 

weights. 

 

Figure 2.5 

Illustration of multi-class dasymetric mapping method approach 
 

Multi-class dasymetric mapping can provide higher quality results than the binary 

approach; however, its major limitation lies in the subjective assignment of weights to 

subzones. Additionally, Su et al. (2010) point out that the method assumes uniform 

population density within each class, which may not hold true across different parts of the 

source zone. They suggest adopting more objective approaches that determine weights 

based on the specific characteristics of the area under consideration. 
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Intelligent dasymetric mapping 

Intelligent dasymetric mapping method was introduced by Mennis & Hultgren (2006a) 

as a solution to subjective weights in weighting layer. In contrast to multi-class dasymetric 

mapping, this method estimates weights by sampling population densities associated with 

ancillary spatial classes in the source zone. Alternatively, analysts can assign preset 

densities to certain ancillary classes based on local knowledge, for example, setting the 

density for water bodies to zero. 

Sampling means to picking source zones (e.g. census blocks) that are linked to a specific 

ancillary class (e.g., specific type of land cover), i.e. that are indicative or representative 

for this ancillary data. As proposed by (Mennis & Hultgren, 2006b), three main types of 

sampling are possible: centroid, contained or percentage cover approach. Centroid 

approach selects only those source zones (e.g. census blocks) whose centroid falls within 

individual ancillary class (e.g., specific type of land cover). Contained approach takes 

source zones that are wholly contained within an individual ancillary class while 

percentage cover uses a threshold percentage (e.g., 70%) to select source zones whose 

area of occupation by a single ancillary class is greater than or equal to this threshold. 

Once the source zones are linked to ancillary classes based on sampling, their population 

counts and areas are used to calculate population densities. Finally, these population 

densities are used as weights to reallocate population from source zones to target zones 

(Mennis & Hultgren, 2006a). If the parameters are set appropriately, intelligent 

dasymetric mapping can serve better quality results than areal weighting or binary 

dasymetric (Mennis & Hultgren, 2006b).  

The concept of deriving weights from ancillary data through self-training has evolved over 

the years into more comprehensive and computationally intensive disaggregation 

methods. These methods often incorporate complex spatial statistics to model the 

correlation between ancillary data and source zone population data. Sapena et al. (2022) 

classify these methods as statistical methods. 
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Statistical areal interpolation methods 

Statistical areal interpolation methods utilize ancillary data in statistical functions to 

establish functional models capable of describing relationship between spatial distribution 

of ancillary data and spatial distribution of population data in source zone that is to be 

reallocated (Comber & Zeng, 2019). This method makes assumption of correlation 

between ancillary data and source zone data which is why this should be verified before 

running statistical analysis (Qiu et al., 2022). Main approach of any method relies on use 

of statistical techniques like least squares, geographic weighted regression, linear 

regression or random forest to model relationship between source data and ancillary data 

(Monteiro et al., 2021; Sapena et al., 2022; Song et al., 2019). The resulting model is then 

used as weighting layer and applied to target zones to estimate final population values 

based on their attributes. Additionally, Comber & Zeng (2019) highlight geostatistical 

methods as an emerging subgroup within this category. Although originally used for point 

interpolation, geostatistical methods can include spatial autocorrelation in the modelling 

process and inherently maintain volume-preserving (pycnophylactic) properties (Comber 

& Zeng, 2019). 

Statistical methods tend to perform well when remotely sensed ancillary data are 

combined with other geospatial datasets, such as road networks (Sapena et al., 2022). 

Comber & Zeng (2019) attribute this success to geodata acting as detailed control 

variables that enable more precise population redistribution. This insight has paved the 

way for hybrid methods, which integrate the strengths of dasymetric mapping with the 

analytical power of statistical approaches to produce more accurate disaggregation results. 

Hybrid methods 

Hybrid methods can be viewed as an advanced form of intelligent dasymetric mapping, 

where the weighting layer is derived from a statistical model as used in statistical methods. 

The key assumption here is that these weights represent population density only within 

populated areas, while unpopulated regions are excluded from the redistribution process 

(Wang & Wang, 2024). Compared to other approaches, hybrid methods generally yield 

more accurate results but require more complex modelling and higher computational 

resources (Sapena et al., 2022). 
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2.2.4 Review on Spatial Disaggregation Methods 

Chapters 2.2.2 and 2.2.3 describe the theoretical foundations of spatial disaggregation of 

population data; however, these form only the basis for methodologies applied in practice. 

No single disaggregation method performs optimally in all scenarios, and their universal 

applicability is often constrained by the availability and diversity of suitable geospatial 

data (Swanwick et al., 2022). Therefore, this chapter aims to provide an overview of the 

various practical disaggregation approaches and highlight the key concepts that are 

common across different methods. 

Methodologies adopted in practice 

The scientific community remains actively engaged in developing new and improved 

methodologies for spatial disaggregation, as reflected in the growing number of 

publications on this topic. All these studies aim to produce higher-quality disaggregated 

population data, pushing the boundaries of how ancillary data is utilized within different 

methodologies. For instance, Baynes et al. (2022), Calka et al. (2016), Cartagena-Colón 

et al. (2022), Karunarathne & Lee (2019), Liu et al. (2023), Mennis & Hultgren (2005), 

Monteiro et al. (2018, 2019, 2021), Pajares et al. (2021), Reiter et al. (2023), Stevens et 

al. (2015), Swanwick et al. (2022) all employ approaches based on dasymetric mapping, 

differing primarily in the types of ancillary data used and how it is incorporated into the 

process. 

For example, Mennis & Hultgren (2005) rely solely on land cover data for population 

redistribution using multi-class dasymetric mapping, while Baynes et al. (2022) extend 

this by including land use data to inform weighting for population reallocation. Monteiro 

et al. (2018) integrate nighttime lights, land cover, and road networks within linear and 

generalized additive regression model that combines dasymetric mapping and 

pycnophylactic interpolation. Similarly, Monteiro et al. (2019) employ land cover, 

elevation, terrain development, and distance to water bodies using ensembles of decision 

trees, also blending dasymetric mapping with pycnophylactic interpolation. Stevens et al. 

(2015) utilize over 20 types of ancillary data within a random forest model to determine 

weights for dasymetric mapping, whereas Reiter et al. (2023) base their approach on 
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detailed building-specific information, such as volume and footprints, to guide the 

dasymetric mapping process. 

From this sample of diverse scientific articles, it is evident that the disaggregation process 

is not a straightforward, one-size-fits-all approach. Instead, it manifests in various forms 

depending on the chosen base model and the types of data employed. Therefore, spatial 

disaggregation should be viewed as a flexible framework that offers minimal prescriptive 

guidance, allowing for adaptation based on specific data availability and methodological 

preferences. 

Shared Conceptualizations Across Disaggregation Methods 

Spatial disaggregation methods are used to redistribute aggregated population data from 

arbitrary spatial units, such as administrative zones, into spatial units that better represent 

the actual distribution of the population. As highlighted by Mennis & Hultgren (2006a) 

disaggregation is a process which means it has well established general procedures, and 

no matter the approach, all methods share some same characteristics. For example, all the 

methods include administrative or statistical units, often in vector representation, and 

information on their population counts. Furthermore, all the methods are oriented in the 

same direction and start from source zone with aggregated data and result in target zones 

with disaggregated data. Even though these zones may be different in shape and size, they 

have uniform meaning throughout the methods. Moreover, all methods rely on additional 

parameters that guide this process. These parameters can range from simple area 

proportion, subjectively estimated population density for a specific area to more complex 

statistical models that consider correlation of different georeferenced data with existence 

of population. But no matter the way parameters are gained, they serve as weights in final 

disaggregation step. From a conceptual standpoint, the primary distinction between 

methods lies in the use of ancillary data: some rely solely on source zone characteristics, 

while others incorporate external data. Additionally, representation of ancillary data may 

also be the distinction here as some methods use geodata in vector structure while others 

consider raster data or a combination of both as source of information. 
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2.2.5 Practical Implementation of Spatial Population Disaggregation 

Research in the field of spatial disaggregation can be viewed as twofold. On one hand, 

some authors focus on developing new and improved disaggregation techniques, as 

discussed in the previous chapter. On the other hand, there is significant effort dedicated 

to creating practical disaggregation tools. In the literature, these tools are generally divided 

into standalone solutions, such as custom-coded scripts, and extensions to existing 

platforms, including programming language libraries or GIS toolboxes. 

Standalone solutions are often developed as proof-of-concept implementations for newly 

proposed disaggregation methods and typically exist as independent scripts. For example, 

Swanwick et al. (2022) provide code for their refined dasymetric mapping approach 

written in programming language for statistical computing, R. Similarly, Monteiro et al. 

(2018, 2019), Stevens et al. (2015) have extended existing R source codes to 

accommodate their novel disaggregation techniques. Another example is Monteiro et al., 

(2021) who implemented a new method using Python scripts, leveraging machine 

learning libraries such as scikit-learn and TensorFlow.  

In contrast to standalone solutions, extensions to existing technologies aim to promote 

broader adoption of spatial disaggregation methods by implementing well-established 

approaches. Batsaris & Zafeirelli (2023) note that only a limited number of such tools are 

currently available, which may limit the wider use of disaggregation techniques in the 

community. In the domain of programming languages, examples can be found in R 

packages pycno and dissever (see Monteiro et al., 2018). Dissever package implements 

Dissever algorithm, hybrid method that combines pycnophylactic interpolation with 

regression-based dasymetric mapping, to spatially redistribute population data (Moreira 

Ribeiro, 2017). Meanwhile, pycno package, developed by Cris Brunsdon, supports 

pycophylactic interpolation based on the algorithm introduced by Tobler (1979). 

In addition to scripting packages and libraries, extensions to GIS also fall within this 

category. A well-known example is Dasymetric-Mapping Extension (DME) developed for 

ESRI ArcGIS which applies areal interpolation to facilitate multi-class dasymetric 

mapping (Sleeter & Gould, 2008). Similarly, Qiu et al. (2012) developed an ArcGIS 

extension offering four disaggregation methods: areal weighting, pycnophylactic 
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interpolation, binary dasymetric mapping, and 3-class regression dasymetric mapping 

(Qiu et al., 2012). More recently, Flasse et al. (2021) introduced a GRASS GIS extension 

that utilizes machine learning-based dasymetric mapping. This tool calculates weighting 

layers by applying machine learning techniques over land cover and land use datasets 

(Flasse et al., 2021). 

All the previously described approaches have limitations that hinder their broader 

adoption. On one hand, scripting solutions require advanced programming skills, while on 

the other hand, GIS extensions are often not open-source, typically require proprietary 

software licenses, and are rarely available as ready-to-use, off-the-shelf tools (Batsaris & 

Zafeirelli, 2023). To address these challenges, Batsaris & Zafeirelli (2023) proposed a 

web-based tool for population reallocation called the PoD tool. This tool integrates four 

disaggregation methods, areal weighting, volume weighting, binary dasymetric mapping, 

and float dasymetric interpolation, offering a user-friendly, ready-to-use application that 

produces disaggregated population data with minimal user input. 

Given this review of current practical approaches to population disaggregation, it is clear 

that a certain level of data processing expertise is required to perform any form of 

disaggregation. As the importance of population data in geospatial applications continues 

to grow, Batsaris & Zafeirelli (2023) emphasize the need for automated solutions that 

require minimal user input. According to the authors, such solutions eliminate the 

complex stages of data collection and preprocessing, making disaggregation more 

accessible and better suited to meet the needs of both experts and novices alike. 

2.3 Time Consideration in Population Distribution 

As explained in Section 2.1.2, population data refers to the number of people residing 

within a given area. However, due to constant population migrations, this data is 

inherently time-dependent, making the temporal reference crucial for comprehensive 

interpretation and application. Official statistics, which are the most common source of 

population data, typically provide snapshots in time, often with limited temporal 

resolution. Depending on the data collection approach employed in the creation of official 

statistics, temporal resolutions can vary from low to high. For instance, censuses, due to 

their complexity, are usually conducted every ten years and often take several days or 
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weeks to enumerate the entire population (Nebiler & Neupert, 2020). This puts 

constraints on practical usability of data as, firstly, data is available every ten years making 

these decennial snapshots uninformed of population changes within this period, and 

secondly, data analysis can take up to few years making data obsolete before even released 

(National Research Council, 2007). Limitations of censuses are usually bridged with 

sample surveys. As these are less expensive to conduct, sample surveys are more 

temporally frequent (monthly, quarterly or annually), undertaken periodically or ad hoc 

(United Nations Department of Economic and Social Affairs, 2008). While ad hoc 

surveys can satisfy immediate needs, e.g. interdecennial estimation, they cannot set a 

framework for continuous time series. On the other side, periodical surveys act with cyclic 

repetition and can monitor observed phenomena over a period of time. Often, sample 

survey approach is used to provide insight into temporal changes of population in between 

the censuses (United Nations Department of Economic and Social Affairs, 2005). Lastly, 

administrative records, drawn from official registers, have the potential to provide 

population data with almost daily temporal resolution. But this is dependent on the 

maintenance of the registers and may not be reliable in cases of low-frequency updates 

(United Nations Economic Commission for Europe, 2007). 

Goodchild (2013) argues that time and space in geography are inseparable and must be 

modelled jointly. Since most available population datasets are based on census data with 

a fixed census time reference (Wang & Wang, 2024), fulfilling the needs of many 

applications requires not only spatial disaggregation but also temporal adjustment. 

2.3.1 Time modelling in GIS 

Pred (1977) defines time geography as an approach focused on understanding human 

activities within the context of space and time. It is constrains-oriented and recognises 

every activity occurs at a specific location and lasts for a given period (Miller, 2003). In 

GIS this approach is referred to as people-based approach, as it tracks entities, i.e., 

individuals, in their movements through time and space. However, Miller (2007) 

distinguishes a second approach for modelling time in GIS, known as place-based 

approach, which focuses on changes occurring at fixed spatial locations over time. 

According to King (2019), it is this place-based approach, which monitors changes from 
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a spatial perspective, that is more commonly used to handle time in GIS rather than the 

people-based approach. 

Geospatial data is generally understood to have three main components: space, time, and 

attributes. Each of these components can change, meaning that both spatial locations and 

attribute values may vary over time. Based on this, Yuan (1997) defines six main types of 

spatial/temporal changes that make use of fixed, controlling and measuring component. 

These types are divided primarily based on the fixed component, while the remaining two 

components are used to monitor the change. For example, if the attributes of a given area 

change over time or across space, then space is fixed, time acts as the controlling 

component, and attributes are the measured variables (Yuan, 1996). To model these 

types, the literature proposes numerous temporal GIS models, which can be classified in 

various ways (see Siabato et al., 2019). Yuan (1996) offers a straightforward classification 

based on how time is handled in the model, distinguishing between timestamping spatial 

objects and modelling time through events or processes. 

Timestamping of spatial objects 

The simplest example of the timestamping approach is the Snapshot Model (Table 2.1), 

where the temporal aspect of data is represented by a series of layers of the same thematic 

data, each tagged with a different timestamp (Armstrong, 1988). Examples include 

shapefiles containing land use polygons or remotely sensed images taken at different 

times. Although these snapshots are arranged sequentially, they are not temporally linked, 

and thus do not inherently capture or explain changes occurring between consecutive 

timestamps (Siabato et al., 2019). This means that to detect changes, the layers must be 

directly compared within a GIS environment. There have been attempts to improve 

Snapshot Model. Beller et al. (1991) introduced the Temporal Map Sets Model with the 

core concept of system being capable of making interpolation between the layers and 

creating a layer whose cells did or did not participate in the change – binary temporal map 

sets. While the Snapshot Model is straightforward to implement in GIS systems (King, 

2019), its main drawbacks are data redundancy and the risk of data inconsistency (Yuan, 

1996). 
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Table 2.1 

Temporal shapshots of Zagreb administrative unit (modified from Hedefalk et al., 2014) 
 

ID Name timeStamp Geometry 
15 
22 
89 

Kaptol 
Zagreb 
Zagreb 

14.3.1813 
7.9.1850 
9.11.1990 

(polygon 1) 
(polygon 2) 
(polygon 2a) 

 

The second type of timestamping models focuses on representing the evolution of spatial 

objects by capturing their changes over time. As King (2019) explains, this can be done 

in multiple ways. One example is the Space-time Composites Model, also considered a 

refined version of the Snapshot Model, proposed by Langran & Chrisman (1988). This 

model represents conceptual changes of spatial objects at discrete points in time by storing 

these changes within layers of time composites (Yuan, 1996). Unlike the simple Snapshot 

Model, each composite maintains an attribute history that describes the composite from 

which it was derived (King, 2019). However, despite this improvement, the model is still 

limited in its ability to track individual objects and detect changes over time (Hedefalk et 

al., 2014). Another approach, introduced by Worboys and Duckham (2004), records 

every change in a spatial object by adding it as a temporal dimension known as the object’s 

lifeline (King, 2019). This method enables modelling the entire lifecycle of an object, with 

timestamps for each significant event such as creation, spatial modifications, or 

typological changes (Table 2.2) (Hedefalk et al., 2014). 

Table 2.2 

Zagreb administrative unit stored as object lifelines (modified from Hedefalk et al., 2014). 

startData and endDate represent validity period for the administrative unit  
 

ID AdminUnitID Name startDate endDate Geometry 

2 
3 
4 

Au_Zagreb_1 
Au_Zagreb_2 
Au_Zagreb_3 

Kaptol 
Zagreb 
Zagreb 

14.3.1813 
7.9.1850 
9.11.1990 

7.9.1850 
9.11.1990 
- 

(polygon 1) 
(polygon 2) 
(polygon 2a) 

 

Another approach within this category is the Spatiotemporal Object Model proposed by 

Worboys (1992). In this model, real-world objects are represented as spatiotemporal 

atoms in a three-dimensional space, where time serves as the third dimension (Figure 2.6). 
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A key characteristic of this approach is that spatiotemporal atoms are homogeneous units 

with properties fixed in both time and space, while the temporal dimension allows the 

model to capture changes in spatial attributes over time (Siabato et al., 2019). Unlike the 

Snapshot Model, the Spatiotemporal Object Model represents only sudden changes 

occurring at discrete points in a linear temporal sequence (Yuan, 1996). Approaches like 

this, where object is considered to be unambiguously identified makes these types of 

models classified as object-oriented models. According to Siabato et al. (2019) object-

oriented models provide an intuitive understanding of the dynamic behaviour of 

independent objects, enabling effective tracking of their changes. This characteristic has 

made object-oriented models widely accepted and foundational for many adopted 

spatiotemporal modelling approaches (Siabato et al., 2019).  

 

Figure 2.6 

Spatiotemporal objects as spatiotemporal atoms (modified from Worboys, 1992) 
 

A main disadvantage of timestamping approaches is their limited ability to provide 

detailed information about the nature of the change itself; instead, these models primarily 

focus on the occurrence of a change event in the observed phenomenon. 

Spatiotemporal information as event or process 

Dynamic behaviour of phenomena can be modelled in a way that it enables informative 

spatiotemporal queries that address not only where and when, but also why and how fast 

changes occurred. Such approaches describe complex spatial, temporal, and thematic 

interrelations, allowing the identification of patterns, trends, and causes of change within 
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the space-time environment (Langran, 1992 according to King, 2019). King (2019) refers 

to these as spatiotemporal models, defining them as integrated representations where 

events, actions, and processes are explicitly modelled alongside the objects they modify. 

Siabato et al. (2019) provide an overview of several empirical implementations of this 

approach. For example, Three-Domain Model proposed by Yuan (1996) defines spatial 

(point, lines, polygons, cells), temporal (time instants and periods) and thematical (aspatial 

and atemporal attributes) objects in three separate domains and links them to create 

dynamic representation of geography (King, 2019). Unlike Snapshot Models, where time 

is tied to specific locations, this model treats time independently, offering flexibility to 

represent reality and monitor various changes, including attribute modifications and both 

static and dynamic spatial transformations (Siabato et al., 2019). 

Another example is the Process-based Spatiotemporal Model introduced by Yang & 

Claramunt (2003). This approach considers entities, processes and changes as modelling 

primitives and describes them separately within spatial, temporal, and thematic domains 

interconnected by domain links (Siabato et al., 2019); similarly to approach in Yuan 

(1996).  

Furthermore, the Event Oriented Spatiotemporal Data Model (ESTDM) developed by 

Peuquet & Duan (1995) organizes event-caused locational changes in a timestamped 

raster layers. Starting with an initial state (the so-called base map), ESTDM stores 

changes in state over time rather than storing complete instances (Peuquet & Duan, 1995) 

(Figure 2.7). This reduces data redundancy and facilitates easier tracking of changes 

across space, time, and theme-specific values (Siabato et al., 2019). A potential limitation 

of this model is its reliance on raster-based representation, which may restrict flexibility 

(King, 2019). 



Chapter 2  

34 

 

Figure 2.7 

Eventu Oriented SpatioTemporal Data Model (ESTDM) main elements and pointer structure 

(modified from Peuquet & Duan, 1995) 

 

Each of the models described above has its own advantages and limitations. For example, 

simple approaches like the Snapshot Model are easy to implement in GIS but cannot 

capture complex spatiotemporal relationships. In contrast, spatiotemporal models enable 

more in-depth analysis by explicitly representing events, processes, and interactions, but 

they require more complex modelling and often depend on diverse data types that may 

not always be available. Therefore, the choice of model should be guided by the specific 

goals and requirements of the intended model’s application (Renner et al., 2018). 

2.3.2 Intercensal population data 

Although spatiotemporal population modelling is highly valuable in many areas of 

application, for example in risk assessment that requires having detailed information 

about real-time population distribution (Renner et al., 2018), i.e. knowing who is where, 

it may not always be necessary or feasible. Ch et al. (2021) argue that place of residence, 

referred to as nighttime population, is often key demographic data used for urban 

planning, infrastructure design, housing and health services organization, as well as for 

making temporal comparisons of population size and change. Furthermore, Wang & 

Wang (2024) indicate that production of time accurate population distribution relies on 

high temporal resolution data such as mobile phone locations. While access to such data 

may be a major barrier to widespread use of spatiotemporal disaggregation models, this 

highlights that timestamping approaches still offer a practical and suitable solution for 

many real-world applications. 
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Neal et al. (2022) state that censuses are golden standard for population data; however, 

their decennial resolution is insufficient to capture changes occurring between census 

years. This limitation has driven the development of several temporally refined population 

data products in recent years, e.g. WorldPop 100m resolution annual population grids, 

highlighting the growing importance of intercensal population estimation (Neal et al., 

2022). 

In their work, Silva et al. (2011) produce improved annual population growth rates to 

temporally disaggregate available census data. The authors first interpolate decennial 

cumulative growth rate into annual growth rates using vital statistics data (births and 

deaths rates). Vital statistics are available for every year in the intercensal period and are 

used to rectify interpolated growth rates. In the second step, time-series model is used to 

distribute population changes over the years based on the improved annual population 

growth rates. Because the annual growth rates are constrained so that their cumulative 

sum matches the decennial census totals, the method maintains consistency both at the 

annual and decadal scale. 

Creation of WorldPop annual population grids follows a similar approach. First, data on 

population counts per administrative units are taken from the global database. If needed, 

these population counts are projected to reference year using estimated population 

densities. Following this, the data are spatially disaggregated to achieve higher resolution 

using dasymetric mapping, with weights determined through a random forest method 

(World Pop, 2024). 

Wang et al. (2020) created annual intercensal population estimates for age, sex and 

race/ethnicity subgroups at the level of census block. Authors firstly considered boundary 

change and redistributed more recent population counts onto boundaries from previous 

census year using area intersection ratio. Then, estimation of population for a certain year 

was calculated by weighting population with its temporal proximity to both referent 

censuses (Wang et al., 2020).  

Han & Howe (2024) propose neural network model designed to disaggregate spatially 

and temporally aggregated data into finer spatial and temporal resolutions. Even though 

disaggregation is an integrated process, it can be viewed as sequential in its execution. The 
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model is based on a Structurally-Aware Recurrent Network, which begins with discrete 

points in time, such as census counts, and applies statistical interpolation to estimate finer 

temporal series by leveraging temporal dependencies across these discrete time points 

within each spatial unit. Temporally refined counts are then spatially reallocated into 

smaller areas using spatial disaggregation methods. 

From the reviewed articles, it is seen that usually one layer of spatial units holds the anchor 

value (e.g. census data) while changes in the value are provided in timestamped layers 

with reference to these spatial units. Often, temporal difference between these timestamps 

(layers) is used to interpolate population counts. Neal et al. (2022) build this on and state 

that administrative records on population change (migration, birth, death) and sample 

household surveys, can be useful for these purposes as these are collected with higher 

accuracy or more frequently. Keeping in mind that intercensal nighttime population 

supports a variety of applications, the interpolation approach between censuses will be 

used, primarily for modelling simplicity, as the basis for temporal disaggregation in the 

proposed population model in this dissertation. 
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The primary focus of this research is the development of an ontology model. Accordingly, 

this chapter examines the conceptual foundations underpinning the creation of an 

ontology model for the spatiotemporal disaggregation of population data within a semantic 

web environment. To ensure a comprehensive understanding of the topic, the chapter 

introduces key concepts relevant to the domain and explores their interrelationships, 

discusses methods for the creation and representation of data in the semantic web, and 

reviews existing approaches to the ontological modelling of processes. 

3.1 Concept of Semantic Web  

The term semantic pertains to the meaning of words or the processes through which 

meaning is derived. While humans can easily deduce and infer meaning from structured, 

semi-structured, or even unstructured but contextually related information, such as in 

everyday communication, computers encounter considerable difficulty in this regard 

(Frontiersi, 2018). Consequently, computers face challenges in advancing along the Data, 

Information, Knowledge, Wisdom (DIKW) pyramid; that is, in transforming raw data into 

meaningful information, generating knowledge from that information, and ultimately 

applying that knowledge to produce wisdom (see Baškarada & Koronios, 2013). 

Tim Berners-Lee borrowed the term semantic and used it to denote his vision of a new 

form of web – Semantic Web, in which content is provided in formats that are 

understandable not only to humans but also to machines. In contrast to traditional web, 

where meaning is locked in HTML documents written in natural, human-readable 

language, the Semantic Web is based on the premise that every extract of information on 

the web is given semantic description, such that machines can infer about what it is and 

use it accordingly (Hogan, 2020). To illustrate this distinction, Baučić (2014) considers 

Semantic Web as a database which can be searched and interpreted by the computers, in 

contrast to the current web that can be seen as a book only people can search and 

interpret. 

This new conceptualization of the web is not intended to replace the web as we know it 

but should be seen as an extension to better exploit its potentials (Berners-Lee et al., 

2001). According to Baučić (2014), the Semantic Web  enables more effective utilization 

of the current web by introducing semantic information that facilitates improved search, 
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linking, integration, and retrieval of data. Furthermore, automatic reasoning applied to 

semantically enriched data can be leveraged to support applications such as the 

automation of tasks within the web services lifecycle (De Souza Neto et al., 2018) and in 

data-analytical processes (Bednár et al., 2024).  

Tim Berners-Lee conceptualized the Semantic Web architecture as a layered framework 

of standards and technologies that incorporate formal, machine-readable semantics into 

data, thereby enabling the creation of data stores, supporting vocabularies, and rules for 

data processing (Berners-Lee et al., 2001). This framework, commonly referred to as 

Semantic Web technology stack (Figure 3.1), describes how technologies are layered to 

support this new form of web but also how the new web is built on top of the traditional 

web technologies such as URIs, Unicode and XML. To ensure a stable foundation for the 

implementation and future advancement of the Semantic Web, the World Wide Web 

Consortium (W3C) plays an active role in the development and standardization of the 

Semantic Web technology stack. 

 

Figure 3.1 

Semantic Web technology stack (modified from Frontiersi, 2018) 
 

As previously discussed, the Semantic Web is founded on the concept of semantically 

interconnected data that can be interpreted and reasoned about by machines. This places 

ontologies, representations of domain-specific knowledge, at the core of the Semantic 
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Web paradigm. However, to effectively utilize the semantics embedded within ontologies, 

several complementary technologies for their creation and application are required. For 

instance, the Resource Description Framework (RDF) is used to describe and structure 

the data, while SPARQL enables querying across the global network of interconnected 

data. The Web Ontology Language (OWL) provides formal semantic representation, and 

the Rule Interchange Format (RIF) and Semantic Web Rule Language (SWRL) are used 

to define additional rules on data semantics. The upper layers of the architecture, 

Unifying logic, Proof, Trust and Cryptography serve to ensure that the Semantic Web 

remains reliable, secure, and trustworthy for real-world applications (Al-Feel et al., 2008). 

Given that the primary goal of this research is the development of an ontology model, the 

subsequent discussion will concentrate on the technologies pertinent to capturing 

semantics, as well as representing and querying data. 

3.2 Foundations of Semantic Web 

The Semantic Web builds on a simple but powerful data model: representing knowledge 

as triples of subject–predicate–object. The creation of meaningful and interoperable 

triples, however, requires stable conceptual foundations grounded in ontologies and 

supporting technologies that define shared meaning, clarity, and consistency across 

systems. These foundations establish a shared layer of data that can be exchanged and 

reused across diverse contexts. 

3.2.1 Ontology 

Ontology is defined as philosophic field concerned with the nature of existence, seeking 

to explain what entities exist and how they relate to one another (Maedche, 2002). Within 

the context of information sciences, ontologies are used to represent knowledge about a 

partition of reality in an intelligent computer system and are described as a “formal 

specification of a shared conceptualization” in a domain of interest (Gruber, 1993). This 

definition by Gruber (1993) emphasizes two main concepts: formal specification and 

shared conceptualization. While shared conceptualization means that the real world is too 

complex for representation and that it should be simplified to a formal, agreed-upon model 

of a domain for representation in a system, formal specification denotes need for codifying 

this shared conceptualization in a logical language with well-defined syntax and semantics 
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(Neuhaus, 2018). This approach enables both humans and machines to share a common 

understanding of the entities that exist within a domain, their properties, and the 

relationships among them.  

To represent knowledge, ontologies in a domain of interest conceptualize the real world 

using classes, properties (attributes), individuals and relations (National Academy of 

Sciences Engineering and Medicine, 2022). Classes and their subtypes (subclasses) 

constitute abstract groupings of entities, typically organized into hierarchical structures 

(taxonomies) and characterized by their properties. Individuals are concrete members of 

classes, or class instances, and relations define connections between classes, between 

classes and instances, or among instances themselves. This structured set of concepts 

enables the creation of a human-readable vocabulary and taxonomy of representation 

terms, ensuring a coherent and semantically consistent knowledge representation. But, to 

ensure their constrained interpretation and use by the computer, i.e. to support automated 

processing, ontologies rely on formal axioms applied to classes and relations (Hogan, 

2020). These axioms augment the semantic framework of the vocabulary with formal 

logic and constraints, which are essential for automated reasoning and inference. 

The demand for knowledge representation across diverse application domains has led to 

the development of a wide range of ontologies. These ontologies vary in the types of 

knowledge they convey, and Kharbat & El-Ghalayini (2008) classify them along three 

dimensions: level of formality, level of generality, and types of primitives. 

The level of formality distinguishes ontologies according to the degree of expressivity and 

precision in concept specification (Figure 3.2). Uschold & Gruninger (1996) propose that, 

based on the formality of knowledge representation, ontologies can be categorized as 

informal, formal, or semiformal. Informal ontologies are typically expressed in natural 

language and primarily serve to convey the hierarchy of concepts within a domain, 

identifying relevant concepts and their interrelationships. In contrast, formal ontologies 

are designed for computational use, employing complete axioms to formally define 

semantics within a model. Semiformal ontologies occupy an intermediate position, 

incorporating axioms into the hierarchy but expressing only basic, atomic statements 

rather than complex logical expressions (Uschold & Gruninger, 1996). Corcho et al. 
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(2003) further classify ontologies based on the restrictiveness of their semantic models 

into lightweight and heavyweight ontologies (Figure 3.2). Lightweight ontologies primarily 

define taxonomies, identifying concepts, relations, and properties, often supplemented 

with a minimal set of axioms, such as subclass or subproperty declarations, to capture 

basic semantics. Heavyweight ontologies extend lightweight ontologies by incorporating 

additional axioms and constraints, enhancing their reasoning and inferential capabilities. 

While heavyweight ontologies provide greater semantic precision and reduce ambiguity, 

their development is more resource-intensive and time-consuming (Baučić, 2014). 

 

Figure 3.2 

Spectrum of ontology kinds based on expressivity and formality in concept specification 

(modified from Wong et al., 2012) 
 

Ontologies are developed for specific domains of interest and are not generic or isolated; 

rather, they are shaped by particular user perspectives and their interactions with other 

domains. Consequently, a single domain can be represented from multiple perspectives, 

resulting in different descriptions of the same concepts. Within the context of the 

Semantic Web, these multiple descriptions are not problematic, as the framework 

operates under the open-world assumption, wherein knowledge is considered unbounded 

and continually updated with new information. The Semantic Web therefore relies on 

multiple ontologies to construct its knowledge base and is designed to facilitate the 

reconciliation of different ontologies into a unified knowledge graph. To support this 

process, it employs ontologies at varying levels of conceptualization. 
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Guarino (1998) classifies ontologies according to the level of detail in their 

conceptualization, distinguishing three levels of granularity: top-level (general) ontologies, 

domain and task ontologies, and application ontologies (Figure 3.3).  

 

Figure 3.3 

Kinds of ontologies in general ontology classifications (modified from Mohamad et al., 2021 and 

Polenghi et al., 2022) 
 

Top-level ontologies describe general concepts such as space, time, or objects, which are 

universal and independent of any specific domain or problem. Several such ontologies 

exist and some of widely used are SUMO (Suggested Upper Merged Ontology), BFO 

(Basic Formal Ontology) and DOLCE (Descriptive Ontology for Linguistic and Cognitive 

Engineering). DOLCE adopts a descriptive approach, representing the world from the 

perspective of human perception and conceptualization. It distinguishes between 

endurants (entities that persist through time), perdurants (entities that unfold over time), 

qualities (properties inherent in entities), and abstracts (non-physical entities, such as 

numbers), reflecting a perspective closely aligned with natural human descriptions (Borgo 

et al., 2022). BFO, in contrast, originates from biomedical sciences and is realist in 

orientation, representing entities that exist independently of human conceptualization 

while emphasizing scientific rigor and interoperability. It establishes a fundamental 

distinction between continuants and occurrents, which serves as a foundation for building 

additional ontologies (Arp et al., 2015). Finally, SUMO aims for comprehensive coverage, 

integrating insights from multiple existing ontologies and defining broad concepts such as 

Object, Process, and Relation (Niles & Pease, 2001). 
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Domain and task ontologies encompass concepts that are broadly applicable across 

general domains (e.g., topography) or activities (e.g., diagnosing). They further specialize 

the general concepts defined in top-level ontologies to facilitate knowledge integration 

within a specific domain (Guarino, 1998). Examples of domain ontologies include OGC’s 

GeoSPARQL vocabulary, which represents geospatial objects; W3C’s RDF Data Cube 

vocabulary, for statistical data representation; and W3C’s OWL-Time ontology, which 

describes temporal concepts. In contrast to domain ontologies, which primarily define 

static concepts, task ontologies are designed to represent knowledge about particular tasks 

or activities, with the aim of achieving reusability across different domains. An illustrative 

example is the Function Ontology, which describes functions and their execution 

independently of the underlying technology. 

Application ontologies integrate concepts from both domain and task ontologies, often 

specializing them to address specific application requirements. Within these ontologies, 

concepts typically assume the roles of domain entities while executing activities defined 

by task ontology concepts (Guarino, 1998). 

Finally, representation ontologies provide meta-level vocabularies that serve as 

foundational building blocks, such as classes, properties, and individuals, for describing 

other ontologies (Kharbat & El-Ghalayini, 2008). rominent examples include RDF 

Schema and the Web Ontology Language (OWL), both of which are integral components 

of the core Semantic Web technology stack. 

The final classification of ontologies is based on the types of primitives employed to model 

the real world. Jurisica et al. (2004) differentiate among three categories: static ontologies, 

which represent the world as a fixed set of concepts, their attributes, and relations; 

dynamic ontologies, which capture the evolving aspects of the world, such as states or 

transitions; and social ontologies, which model social constructs, including actors, 

positions, and commitments. 

Semantics captured in ontologies form the very core of the semantic web, but for this 

knowledge to be exploited, technological infrastructure must be in place. 
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3.2.2 Resource Description Framework (RDF) 

Data on the web originates from diverse sources and is structured according to various 

abstract models, for example, CSV represents tabular data, while XML represents 

hierarchical trees (Hogan, 2020). Such heterogeneous data structures pose a challenge to 

the vision of the Semantic Web, in which distributed data should be seamlessly integrated 

into a global network. This challenge prompted the development of a unified data model 

that is sufficiently generic to represent different types of data, thereby facilitating 

interoperability, integration, and data exchange. 

The Resource Description Framework (RDF) is a standard framework for describing 

resources, defined as anything of interest, within the Semantic Web. RDF is based on the 

concept of triples, comprising subject–predicate–object statements that represent 

relationships between resources, thereby modelling the web as a directed graph. This 

structure closely resembles natural language expressions, making the model sufficiently 

flexible to capture data from diverse sources. For instance, when converting tabular data 

into RDF triples, each row is treated as a subject, each column as a predicate, and the 

corresponding cell value as the object of RDF triple (Table 3.1). 

Table 3.1 

Example tabular data for RDF triple creation 

 

 Population Country 

Gvozd 2047 CRO 

 

Following the proposed conversion rule, tabular data from Table 3.1 can be interpreted 

as follows: 

Triple no. 1: Gvozd is subject, hasPopulation is predicate, 2047 is object, and 

Triple no. 2: Gvozd is subject, withinCountry is predicate and CRO is object. 

Given in the syntax of RDF triples, this information is represented as (Example 3.1): 

Example 3.1 

(Gvozd, hasPopulation, 2047), and  

(Gvozd, withinCountry, CRO), 
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or visualized in directed graphs like (Figure 3.4): 

 

Figure 3.4 

Tabular data representation in RDF triples 

 

Information on the web is often distributed across multiple RDF graphs, with different 

pieces of the same knowledge located in separate graphs. To obtain a complete view, it is 

necessary to merge identical nodes into a single directed graph (Figure 3.5). By linking 

related resources in this manner, the data become linked data, thereby extending the 

informational context within the global semantic network. To enable this linking, nodes 

and edges in RDF triples must be uniquely identifiable and distinguishable from other 

resources on the web. Uniform Resource Identifiers (URIs), which are widely used in the 

traditional web, provide a suitable mechanism for this purpose.  

 

Figure 3.5 

Single directed graph of complementary RDF triples 

3.2.3 Uniform Resource Identifiers (URIs) 

Uniform Resource Identifiers (URIs) are employed to uniquely identify every resource 

within RDF triples in the global semantic network. A resource can represent any entity, 

ranging from tangible objects (e.g., a book) to abstract concepts (e.g., a polygon). The key 

principle is that each segment of information is assigned a unique identifier, enabling 

precise inference about the resource being referenced (Belozerov & Klimov, 2022). For 

example, a URI for the concept of population must clearly indicate whether it pertains to 

its meaning in demographic studies or in biology.  
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Although URIs are designed to be globally unique, the same concept can be represented 

multiple times on the network, resulting in multiple distinct identifiers. Baučić (2014) 

identifies this as a primary challenge of the Semantic Web and outlines three potential 

solutions. The first approach involves manually asserting that all such URIs refer to the 

same concept. The second approach relies on predefined URIs for all possible concepts, 

which are then consistently applied. The third approach establishes consensus among 

relevant stakeholders regarding the URIs assigned to specific concepts. In practice, the 

most common strategy is to reuse existing knowledge rather than create new identifiers, 

a topic that will be explored further in subsequent chapters. 

URIs follow a specific syntax, which Hogan (2020) describes as comprising multiple 

components. In common usage, a URI typically consists of two main parts: (1) the URI 

scheme, which specifies the protocol for accessing the resource, such as http, and (2) the 

textual description of the resource being referenced, which includes the host (the server 

location, often represented as a domain name), the path (the location of a file), and the 

fragment (a reference to a specific piece of information within the file). This structure can 

be illustrated with a simple example, such as the URI for the author of this research: 

 

Figure 3.6 

Example URI schema for web resource 
 

As illustrated in Figure 3.6, URIs resemble URLs (Uniform Resource Locators) but differ 

in a key aspect that renders URLs less suitable for Semantic Web applications. URIs are 

intended to uniquely identify resources, whereas URLs are specifically designed to locate 

resources on the web. In this sense, URLs represent a specialized subset of URIs: all URLs 

are URIs, but not all URIs are URLs. A URI becomes a URL only when it explicitly 

specifies a way for accessing the resource on the web. 

For the example in Table 3.1, we can identify all the resources in the triples by their URIs 

(Example 3.2). 
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Example 3.2 

Triple no. 1: 

(http://data.gov.hr/admUnits#Gvozd, 

 http://stat.gov.hr/census#hasPopulation, 

“2047”^^http://www.w3.org/2001/XMLSchema#integer) 

Triple no. 2: 

(http://data.gov.hr/admUnits#Gvozd,  

http://data.gov.hr/admUnits#withinCountry,  

http://data.gov.hr/admUnits#CRO) 

Writing URIs in their full syntax can be time-consuming; therefore, a shorthand notation, 

known as a Qualified Name (qname), is commonly used. A qname consists of a namespace 

prefix and a local name, separated by a colon. The namespace corresponds to the path 

required to reach the resource, while the local name identifies the specific resource within 

that namespace (Baučić, 2014). For the URI examples provided earlier (Example 3.2), 

the corresponding qnames can be represented as follows (Example 3.3): 

Example 3.3 

namespace 

units: http://data.gov.hr/admUnits# 

stat: http://stat.gov.hr/census# 

xsd: http://www.w3.org/2001/XMLSchema# 

Now, we can describe RDF triples like: 

(units:Gvozd, stat:hasPopulation, “2047”^^xsd:integer), and 

(units:Gvozd, units:withinCountry, units:CRO) 

3.2.4 Literals and Blank nodes 

As illustrated in Example 3.2, the object in Triple 1 is represented differently from the 

object in Triple 2. This distinction arises because RDF is fundamentally concerned with 

representing resources, which in some cases may be literal values, such as plain text, 

numbers, Booleans, or dates. The datatype of a resource is specified using a URI—for 

instance, an integer is represented as xsd:integer—while the actual value is included as a 

literal in the triple (e.g., 2047^^xsd:integer). It is important to note that literals are plain 

http://data.gov.hr/admUnits#Gvozd
http://stat.gov.hr/census#hasPopulation
http://data.gov.hr/admUnits#Gvozd
http://data.gov.hr/admUnits#withinCountry
http://data.gov.hr/admUnits#CRO
http://www.w3.org/2001/XMLSchema


Ontology and Semantic Web 

49 

values that cannot be further described; consequently, they can only appear as objects in 

RDF triples. 

In some cases, a resource cannot be assigned a URI because its precise identity is 

unknown, yet certain information about it still needs to be represented in RDF. For 

example, consider Example 1: we know that Gvozd exists and has a population of 2047, 

but we do not know whether it represents a building, an administrative unit, or some other 

entity. Since no URI can be applied, RDF allows Gvozd to be represented as a blank node 

in triples, enabling the inclusion of additional information about it within the network. 

Blank nodes are distinguished from standard URI-based resources, often using a 

placeholder such as “?” to indicate that they do not correspond to a traditional URI. 

3.2.5 Unicode 

Resources identified by URIs may include specific characters, such as diacritics, or 

characters from region-specific alphabets, such as Cyrillic or Chinese. To represent these 

characters, computers employ various encoding systems, including ASCII, Latin-1, and 

Unicode. Originally, URIs were based on a subset of the ASCII standard, which supports 

only English-language characters (Hogan, 2020). Consequently, characters outside this 

subset must be encoded using substitution techniques, such as percent-encoding. For 

example, the blank space character is not part of the ASCII subset for URIs and is 

therefore encoded as %20; thus, the phrase admin units would be represented as 

admin%20units. To maintain readability for multiword resource names and avoid parsing 

or reasoning issues caused by encoding constraints, naming conventions such as 

CamelCase are often employed. In the CamelCase convention, each word begins with a 

capital letter, e.g. adminUnits, ensuring that URIs remain both human-readable and 

machine-processable. 

To enhance character representation, the newer version of RDF (v1.1) introduces a more 

generalized identifier concept: the Internationalized Resource Identifier (IRI), which 

addresses the limitations of traditional URIs (Hogan, 2020). IRIs utilize the Unicode 

character encoding standard, which can represent over a million characters across all the 

world’s languages (Unicode Consortium, 2024). For this reason, Unicode has become 
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universal encoding system (Al-Feel et al., 2008) with UTF-8 emerging as its most widely 

adopted encoding standard (W3Techs, 2025). 

URIs and Unicode are well-established technologies originally developed for the 

traditional web. According to (Al-Feel et al., 2008), these technologies provide the 

essential capabilities of unique object identification and comprehensive character 

representation, which are required across the upper layers of the Semantic Web 

architecture. For this reason, Berners-Lee positioned them at the foundation of the 

Semantic Web technology stack.  

3.2.6 RDF Serializations 

RDF is a data model that represents data in RDF triples. To store, share, parse and process 

the data, RDF triples need to be serialized. Serialization means to write RDF triples in 

text with syntax that machines can process. Since the creation of Semantic Web, several 

syntaxes, more or less complex, have been proposed for these purposes. 

RDF/XML 

RDF/XML serialization is based on Extensible Markup Language (XML) whose 

hierarchical structure allows nesting of marked elements within the xml schema. XML is 

easily readable to both humans and computers and is used to represent structured data 

on the web so it can be stored, transmitted and reconstructed (W3C, 2008a). Its 

availability, simple structure and syntax that allows to markup data was the reason XML 

was recommended as a format to write down semantically enriched data in the early 

stages of Semanti Web (Hogan, 2020). Example 3.1 in RDF/XML syntax can be 

represented as (Example 3.4): 

 Example 3.4 

<rdf:RDF 
xmlns:units=”http://data.gov.hr/admUnits#” 

  <units:Gvozd 

rdf:about=”http://data.gov.hr/admUnits#Gvozd”> 

  <units:withinCountry>CRO</units:withinCountry> 

  </units:Gvozd> 

</rdf:RDF> 

http://data.gov.hr/admUnits
http://data.gov.hr/admUnits#Gvozd
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However, as XMLs can get very large and complex to read, and can represent the same 

information in myriad ways, RDF/XML is usually replaced by other, more simple 

syntaxes (Hogan, 2020). 

N-Triples 

The simplest syntax to represent RDF triples is N-Triples as it follows the logic in raw 

triples. It represents resources with their full URIs for every triple element within < > 

brackets and in a triple per line of text followed by “.”. Even though simple, such 

representation is considered mayor drawback of N-triples as data can get complex to read. 

Example 1 represented in N-Triples serialization can be as follows Example 3.5): 

 Example 3.5 

<http://data.gov.hr/admUnits#Gvozd> <http://stat.gov.hr/census#hasPopulation> 

"2047"^^<http://www.w3.org/2001/XMLSchema#integer> . 

Turtle 

Turtle serialization combines triples representation of N-Triples with qnames. At the 

beginning, its states namespaces and represent triples line by line using local names. 

Example 3.1 written in Turtle serialization is as follows (Example 3.6): 

 Example 3.6 

@prefix unit: http://data.gov.hr/admUnits# 

@prefix stat: http://stat.gov.hr/census# 

@prefix xsd: http://www.w3.org/2001/XMLSchema# 

unit:Gvozd stat:hasPopulation 2024^^xsd:integer ; 

  unit:withinCountry unit:CRO . 

 

Among the revised three most common serializations, Turtle maintains the best easy 

human readability with machine-processibility all in one. 

3.3 Schema and Ontology Languages 

To provide structure and semantics to raw data, Semantic Web relies on schema and 

ontology languages. These languages, such as RDFS and OWL, define classes, properties, 

and relationships that describe how data is organized and how concepts interrelate. By 

http://data.gov.hr/admUnits
http://stat.gov.hr/census
http://www.w3.org/2001/XMLSchema
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formalizing these patterns, they provide a framework for consistent interpretation and 

reasoning, ensuring that knowledge can be shared and understood across diverse systems. 

3.3.1 RDF Schema 

RDF addresses the problem of structural heterogeneity by unifying data from diverse 

sources within a single, flexible data model; however, it does not resolve semantic 

differences among the data. In other words, RDF provides a uniform graph structure but 

does not define the meaning of the resources within the graph or their interrelationships. 

The RDF Schema Language (RDFS) builds upon RDF, serving as a vocabulary that 

formally specifies the meaning and structure of RDF terms (W3C, 2014a). By 

introducing basic semantic descriptions for resources, RDFS establishes the foundational 

layer of semantics in the Semantic Web. 

According to the RDFS specification, the RDFS language differentiates several types of 

resources, most notably classes and properties, which can be used to describe other 

resources, as well as the hierarchies and relationships among them (W3C, 2014a) (Table 

3.2). Classes serve to categorize resources into groups, while properties establish 

connections between these groups. The W3C specification further defines a set of meta-

classes within the rdfs namespace, providing lightweight semantics for structuring RDF 

data (W3C, 2014a): 

Table 3.2 

RDF Schema main classes (from W3C, 2014) 
 

Name Description 

rdfs:Resource Everything provided on the web is a resource. Therefore, everything on 
the web is a member of rdfs:Resource class. 

rdfs:Class Resources on the web can be grouped, and these groups are defined as 
members of rdfs:Class class. 

rdfs:Literal If resource on the web is literal value such as text or number, then it is 
member of rdfs:Literal class 

rdfs:Datatype If a resource describes data type (string for text, date, etc.) then it is a 
member of rdfs:Datatype class. It can only be object in RDF triple. 
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rdf:HTML If a resource describes literal HTML values, then it is member of 
rdfs:HTML class. 

rdf:XMLLiteral If a resource describes literal XML values, then it is member of rdfs:HTML 
class. 

rdf:Property If a resource on the web is property – appearing as predicate in a triple, 
then it is member of rdfs:Property class. 

 

Furthermore, the W3C specification defines a set of properties in RDFS that serve to 

establish connections between subject and object resources in RDF triples (Table 3.3). All 

of these properties are instances of the rdf:Property class and are constrained by their 

domain and range. Both the domain and range are also instances of rdf:Property and 

specify the types of resources that can appear as the subject (domain) or object (range) of 

a given property. 

Table 3.3 

RDF Schema selected properties (from W3C, 2014a) 
 

Name Description Domain Range 

rdfs:domain Domain definition. 

If P rdfs:domain C, subject in triples 
where P is predicate is instance of 
class C 

rdfs:Property 

rdfs:Class 

rdfs:range Range definition. 

In P rdfs:range C, object in triples 
where P is predicate is instance of 
class C 

rdfs:Property 

rdf:type Subject in the triple is instance of a 
class. 

In R rdf:type C, resource R is instance 
of class C 

rdfs:Resource 

rdfs:subClassOf Class is subclass of a class. 

In C1 rdfs:subClassOf C2, class C1 is 
subclass of class C2 

rdfs:Class 

rdfs:subPropertyOf Property is subproperty of a property. 

In P1 rdfs:subPropertyOf P2, property 
P1 is subproperty of P2 

rdf:Property rdf:Property 

rdfs:label Human-readable version of a 
resource's name. 

rdfs:Resource 
rdfs:Literal 
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In R rdfs:label L, resource R has label L 

rdfs:comment Human-readable description of 
resource. 

In R rdfs:comment L, resource L 
has comment L 

rdfs:Resource 

 

To address more specific use cases, RDFS also includes additional classes and properties. 

Notably, it provides container and collection classes, along with associated properties, to 

describe and represent groups of resources. The key distinction between these two types 

is that collections are closed and represent a fixed set of terms, whereas containers can be 

expanded to include additional members. A representative example of a collection class is 

rdf:List, which is used to describe lists or list-like structures (W3C, 2014a). 

Although relatively simple, the RDFS schema provides a powerful vocabulary that 

effectively addresses challenges in integrating data from heterogeneous sources. In RDF 

graphs, both the data and its schema are stored together, offering flexibility and agility in 

data manipulation, features that are particularly valuable for data integration. According 

to Baučić (2014), RDFS provides three main benefits related to data integration: 

• Terminology reconciliation in which rdfs:subClassOf and rdfs:subPropertyOf 

allows to reconcile terms by establishing their hierarchy. This way, no new 

semantics are needed and terminology from existing sources can still be used in 

the same way. Such approach is highly appreciated by computer systems and 

applications that do not need to be altered in case of data new data integrated in 

the graph. 

• Merging similar data coming from different source can be easily done with the 

introduction of new classes. These new classes serve as a bridge between data 

semantics and again allow linking of data from different sources without altering 

ways data is used. 

• Filtering and classification of data based on their domain and range definitions 

allows new classifications of data into new classes of the same type which don’t 

affect how data used outside of the web. 
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3.3.2 Web Ontology Language 

While RDFS provides basic semantics that enable reasoning about data structure and 

relationships, it lacks the expressive power required to represent more complex real-world 

scenarios, such as specifying that two classes are disjoint. The Web Ontology Language 

(OWL) addresses this limitation by extending the RDFS vocabulary with additional terms 

that support richer semantic expression (Hogan, 2020). OWL introduces an expanded 

set of constructs for formally defining classes, properties, individuals, and the logical 

relationships among them. These constructs include, among others, cardinality 

constraints to express multiplicity, property characteristics, and enumerated classes. 

Within OWL, three sublanguages exist that differ in their semantic expressivity: OWL 

Lite, OWL DL, and OWL Full. OWL Lite is the simplest of the three and is primarily 

used for defining classification hierarchies and simple constraints, such as cardinality. Its 

constructs are shared with OWL DL and OWL Full, but differ in how they are restricted 

for use. OWL DL is a highly expressive language based on description logic, enabling 

structured knowledge representation while remaining computationally feasible. This 

computational feasibility is maintained through restrictions on OWL Lite constructs; for 

example, a class may be a subclass of another class, but it cannot simultaneously be an 

instance of that class. Both OWL Lite and OWL DL impose constraints on construct 

usage, effectively functioning as restricted forms of RDF. In contrast, OWL Full is 

considered a true extension of RDF, imposing no restrictions on constructs, anything 

deemed reasonable is permitted. However, this unrestricted nature renders computation 

potentially undecidable, meaning results are not guaranteed (W3C, 2004b). Some of 

OWL constructs defined by W3C are summarized in Table 3.4: 

Table 3.4 

Selected constructs from Web Ontology Language (from W3C, 2004b) 
 

Constructor Description 

PROPERTIES 
owl:ObjectProperty If predicate P is of type ObjectProperty, it links two instances. 

owl:DatatypeProperty If predicate P is of type DatatypeProperty, it links instance to 
datatype. 
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owl:AnnotationProperty Attaches metadata such as comment or label to classes, 
properties, individuals and ontology headers. 

OBJECT PROPERTIES CHARACTERISTICS 
owl:FunctionalProperty Subject instance can be linked to only one object instance. If 

p  is functional property and C1 p  C2 and C1 p  C3, then C2 
and C3 are the same instances. 

owl:InverseFunctionalProperty Object instance can be linked to only one subject instance. If 
p  is inverse functional property and C1 p  C2 and C3 p  C2, 
then C1 and C3 are the same instances. 

owl:TransitiveProperty If p is transitive property and C1 p  C2 and C2 p  C3, then C1 p 
C3. 

owl:SymmetricProperty If p  is symmetric property and C1 p  C2, then C2 p  C1. 

RESTRICTIONS 
owl:Restriction Class that represents a set of individuals satisfying a specific 

constraint on a given property. 

owl:onProperty Attaches restriction to a property. 

owl:hasValue Defines a class of all individuals for which a given property 
has a specific, required value. 

owl:someValuesFrom Defines a class of all individuals for which at least one value 
of a given property belongs to a specified class. 

owl:allValuesFrom Defines a class of all individuals for which every value of a 
given property (if any exist) must belong to a specified class. 

EQUALITY 
owl:equivalentClass Asserts that two classes have the exact same instances. 

owl:equivalentProperty Asserts that two properties relate the same pairs of 
individuals. 

owl:sameAs Asserts that two URIs refer to the exact same individual. 

CLASS OPERATIONS 
owl:intersectionOf Defines a class as the intersection of two or more other 

classes. 

owl:unionOf Defines a class as the union of two or more other classes. 

CARDINALITY 
owl:cardinality Restricts a property to have exactly N distinct values for an 

individual. 

owl:minCardinality Restricts a property to have minimum of N distinct values for 
an individual. 

owl:maxCardinality Restricts a property to have maximum of N distinct values for 
an individual. 



Ontology and Semantic Web 

57 

OWL constructors in the Semantic Web are grounded in SPARQL CONSTRUCT 

queries. By specifying patterns in the WHERE clause of a query, new semantic 

information can be generated and added to the RDF graph, thereby enriching the existing 

knowledge base. 

The constructors described in Table 3.4 enable the addition of more specific semantics to 

the RDF graph. Depending on user requirements, these constructors can be combined to 

create more complex and expressive statements, for example, defining a class as the union 

of intersections, where instances must satisfy particular type constraints. In OWL, such 

restrictions are especially important, as they allow data to be maintained in their natural 

form while enabling reasoning based on constraints imposed on properties. In certain 

cases, RDF triples may conflict with OWL-defined logic, resulting in a logically 

inconsistent model (Baučić, 2014). 

3.4 Knowledge Representation and Reasoning 

Building on structured schemas, knowledge representation formalizes information in a 

way that machines can interpret and manipulate. Description logic provides logical 

foundation for this process, while reasoners leverage this structure to infer implicit 

knowledge, check consistency, and ensure that the knowledge base aligns with its logical 

constraints. 

3.4.1 Description Logic 

The central idea of the Semantic Web is that machines should be able to read, interpret, 

and automatically reason over data. For instance, if it is defined that “Fido is a dog” and 

“All dogs are animals,” a machine should be able to infer that Fido is an animal without 

this being explicitly stated. Achieving such reasoning requires rigorous mathematical 

foundations to bridge the gap between human conceptualizations of the world and the 

computational mechanisms necessary for intelligent systems to process, query, and derive 

new knowledge. These foundations are provided by Description Logic. 

Description Logic is a fragment of First-order logic, a standard for the formalization of 

mathematics into axioms, optimised specifically for knowledge representation in 

ontologies. Its expressivity is restricted to (only) logical axioms of concepts (classes in 

ontology), roles (properties in ontology), individuals and their combination to represent 
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knowledge. Concepts in the Description logic correspond to unary predicate symbols in 

First-order logic (Class(x)), roles to binary predicates (predicate(x,y)) and instances to 

constants (Constant). Because of this restricted expressivity, Description Logic is 

decidable, i.e. guarantees reliable, terminate and efficient automated reasoning in contrast 

to First-order logic which suffers from undecidability, meaning that some reasoning tasks 

may not terminate or require infinite computation (Hogan, 2020).  

Formally speaking, Description Logic is a family of formal knowledge representation 

languages based on a combination of attributive language (𝓐𝓛) and complement (𝓒). 

While 𝓐𝓛 defined classes by stating attributes their members must have (that is where 

the name comes from), it lacked negation expressivity. Negation in 𝓐𝓛 was introduced by 

the Complement 𝓒 and made 𝓐ttributive 𝓛anguage with 𝓒omplement (𝓐𝓛𝓒) a 

foundation language of the Description Logic.  

𝓐𝓛𝓒 language is founded on atomic concepts and atomic roles which are combined to 

construct more complex concepts and roles, and individuals are treated as instances of 

concepts, always atomic (Krisnadhi & Hitzler, 2014). Hogan (2020) provides description 

of 𝓐𝓛𝓒 constructs and links them to corresponding terms in OWL DL language (Table 

3.5).  

Table 3.5 

ALC language concepts with corresponding description logic semantic and owl equivalent 

(summarised from Hogan, 2020) 
 

Name Syntax Semantics OWL key-term 

Atomic 
concept A AI⊑ ∆I 

owl:Class 

Atomic 
property 

R RI ⊑ ∆I x ∆I 
owl:Property 

Individual a aI∊∆I RDF URI or Literal 

Top 
concept 

⊤ ∆I 
owl:Thing 

Bottom 
concept 

⊥ ∅ 
owl:Nothing 
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Concept 
negation ¬ C ∆I \ CI 

owl:complementOf 

Concept 
intersection 

C ⊓ D CI ∩ DI 
owl:intersectionOf 

Concept 
union C ⊔ D CI ∪ DI 

owl:unionOf 

Existential 
restriction 

∃R.C {x |∃y:(x,y) ∊ RI and y∊CI 
owl:someValuesFrom 

Universal 
restriction 

∀ R.C {x |∀y:(x,y) ∊ RI implies y∊CI 
owl:allValuesFrom 

 

According to Hogan (2020) interpretation of these constructs I in Description Logic is 

described by a pair (ΔI, ⋅I) where ΔI is the nonempty domain and ⋅I is the interpretation 

function that maps every individual, concept and role to their respective elements in the 

domain ΔI. For the constructs in the table (Table 3.5) this means the following. Atomic 

concept A is mapped to AI which is an element of the domain ΔI, and atomic role R is 

mapped to binary relation R I, defined as subset of ΔI x ΔI. Individual a is mapped to aI, an 

element of ΔI and  ⊤ and ⊥ are concepts that contain all or none of the individuals in the 

domain. Negation concept ¬ C expresses the set of all individuals that do not belong to 

the interpretation of concept C (complement to), C ⊓ D and C ⊔ D are intersection and 

union of concepts, and ∃R.C and ∀ R.C are restrictions on properties that define 

individuals as instances of C. 

These main constructs of 𝓐𝓛𝓒 can be extended with new constructs to allow higher 

expressivity of Description Logic. For example, 𝓢 adds transitive closure, 𝓗 adds inclusion 

role, 𝓘 adds inverse roles. In such a way, new languages with more expressivities can be 

built (Hogan, 2020): 

[𝓐𝓛𝓒 | 𝓢][ 𝓗 |𝓡][ 𝓞][ 𝓘][𝓕|𝓝 |𝓠] 

In OWL 2 DL, most recent version of OWL, semantic expressivity is underlined by 

𝓢𝓡𝓞𝓘𝓠 (𝓓) Descriptive Logic language which means it supports transitivity (𝓢), role 

inclusion (𝓡), nominals (enumeration lists), inverse roles (𝓞), inverse roles (𝓘), qualified 

number restrictions (𝓠) and different data types (𝓓) (Hogan, 2020). 
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3.4.2 Knowledge representation in Description Logic 

Knowledge in ontologies is represented in axioms composed of concepts, roles and 

individuals and is stored in Description Logic Knowledge Base (Hogan, 2020). This 

Knowledge Base (K) can formally be described as triple K(T, R, A), where T stands for 

Terminological Box (TBox), R for Role Box (RBox) and A for Assertion Box (ABox) 

(Krisnadhi & Hitzler, 2014).  

TBox and RBox specify knowledge of a domain by defining a vocabulary of concepts 

(classes) and roles (properties), together with axioms that capture hierarchical 

relationships, constraints, and logical dependencies between them (Borgida & Brachman, 

2010). For example, if class C is subclass of class D (C⊑D), TBox will contain axiomC I ⊆ 

D I which has the meaning of rdfs:subClassOf in RDF Schema. Same holds for properties, 

but these axioms are stored in RBox. In literature (Giacomo & Lenzerini, 1996; Nardi & 

Brachman, 2010) TBox is used as a single term for both TBox and RBox as they both 

describe schema of the domain, but growing expressivity of role axioms urges for 

separation. This is notable in OWL 2 DL which is based on 𝓢𝓡𝓞𝓘𝓠 where rules for 

ensuring decidability, such as role of hierarchy, are centered on analysing properties 

(RBox). 

While TBox and RBox axioms specify intensional knowledge, ABox axioms encode 

extensional knowledge consisting of assertions about specific individuals; their 

membership in concepts (a: C) and participation in roles, (a,b) : R (Krisnadhi & Hitzler, 

2014). For example, if Sava is an instance of river, and it flows through Zagreb, an 

instance of city, ABox assertions will have axioms (Example 3.7): 

 Example 3.7 

Sava: river, Zagreb: city, (Sava, Zagreb): flows through. 

Axioms in the TBox, RBox, and ABox of an ontology provide a formalized representation 

of domain knowledge, serving as the foundation for reasoning procedures that derive 

logical consequences. Reasoning over TBox and RBox axioms enables the classification of 

concepts, the discovery of implicit subsumption relationships, and the inference of 

constraints and hierarchies among properties, including role inclusions, transitivity, and 

inverses. In the ABox, reasoning facilitates tasks such as consistency checking, instance 
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classification, and query answering by verifying whether individual assertions conform to 

the constraints defined by the schema axioms. Overall, reasoners ensure that the 

knowledge base remains logically coherent while also enriching it with new knowledge 

derived from explicitly asserted axioms. 

3.5 SPARQL 

Data in Semantic Web are represented in RDF triples which form directed graph of 

Semantic Web. To access and manipulates data in such a structure, appropriate query 

and update languages should be used.  

SPARQL (SPARQL Protocol And RDF Query Language) is a standard query language 

proposed by the W3C (W3C, 2008b) to access data in the graph-based structure of 

Semantic Web. As a query language, it shares common characteristics with other query 

languages (Allemang & Hendler, 2011). For example, Baučić (2014) describes that the 

structure of SPARQL query is similar to structure of SQL in terms of meaning of used 

key words, e.g. Select, Distinct, Filter, Order by, Limit. However, the main difference 

between them is that SPARQL does not cross-reference data as these references are 

already contained within the RDF data model (Baučić, 2014). 

The simplicity of SPARQL query language is in the foundational notion of reusing triple 

pattern from RDF model so queries look like data statements but with a question word in 

a position of triple’s unit of interest (Allemang & Hendler, 2011). This allows powerful 

queries across the graph as subjects and objects (when not literals) can take part in 

multiple triples. Similarly to other query languages, SPARQL operations can be divided 

between reading data from the graph (query) and modifying the graph (update). 

3.5.1 SPARQL Query 

To extract data from RDF triples described in Example 2, a simple SPARQL query can 

be given as (Example 3.8): 

 Example 3.8 

SELECT ?unit 

WHERE { 

 admUnit:Gvozd admUnit:withinCountry ?unit . 

} 
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In the example above, SPARQL SELECT query was used to extract information about 

which country municipality of Gvozd is located within. To get this data, the query contains 

two main parts, SELECT and WHERE. In the SELECT part, one or more arbitrary 

question words (with ? prefix) are used to indicate data to be extracted from the graph. In 

the WHERE part, also called graph pattern (Allemang & Hendler, 2011), these question 

words are reused in the correct position within a triple. Statements in the WHERE part 

are then compared with statements in data graph, and once the exact match is found, 

resource behind question word is returned as a result. For the example above, the return 

value for the query would be admUnit:CRO URI. 

Queries can be more complex than this. In that case, the WHERE part contains more 

statements that should be compared to data graph to get the result. For example, if another 

RDF triple (admUnit:CRO, admUnit:inContinent, admUnit:Europe) is added to the 

graph, following the same node URI, admUnit:CRO object from the previous example 

becomes subject in the new triple. If query is to extract continent municipality of Gvozd 

is in, the query would have the following structure (Example 3.9): 

 Example 3.9 

SELECT ?continent 

WHERE { 

 admUnit:Gvozd admUnit:withinCountry ?unit . 

?unit admUnit:inContinent ?continent . 

} 

In this example, the query engine will take the first WHERE statement, look up for ?unit 

in the data graph and extract URI from the matching triple. The URI will then be used in 

the second statement to look for the triple with admUnit:incontinent predicate and return 

admUnit:Europe result. 

When having more than one statement in the query, the order of the statements is not 

important (Allemang & Hendler, 2011). This is because the semantics are contained 

within the RDF model, and for the result to be found, all statements must be fulfilled either 

way. Ordering of statements, however, makes sense for the faster query execution. If 

statements are ordered in a way such that every new statement narrows down the number 
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of triples to look up for, the query will be executed faster. For this reason, single-question 

word statements are put first in the WHERE part of the query. 

So far, querying was illustrated on examples where only data on subjects and objects in 

RDF triples was extracted from the data graph, but querying can also be used to search 

for the relation properties between them. In this case, question word is placed in the 

position of the predicate in the query statement. However, if subject of the triple uses the 

same predicate to point to different objects, such a query will return multiple predicates 

(properties) of the same type. For example, if the municipality of Gvozd is attached 

another population data literal using the same stat:hasPopulation predicate, e.g. from 

penultimate census (not concerning time reference), querying the graph for predicate 

would return two same values. To filter out only representative types, SPARQL includes 

DISTINCT keyword in the SELECT part of the query (Example 3.10) (Allemang & 

Hendler, 2011): 

Example 3.10 

SELECT DISTINCT ?predicate 

WHERE { 

 admUnit:Gvozd ?predicate ?value . 

} 

Similarly to removing duplicate predicates, SPARQL offers FILTER keyword to make 

more precise statements about the data to be extracted from the graph. For example, if 

the query is to look for population data of municipality of Gvozd that is lower than 2000 

people, the query would be structured as follows (Example 3.11): 

 Example 3.11 

SELECT ?population 

WHERE { 

 admUnit:Gvozd stat:hasPopulation ?population . 

FILTER (?population > 2000^^xsd:integer) 

} 

Apart from SELECT queries which return a table of values, SPARQL supports ASK 

queries with Boolean return type (Yes and No), CONSTRUCT queries returning an RDF 

graph, and DESCRIBE query that returns RDF graph describing terms or solutions 
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(Hogan, 2020). The resulting RDF graphs from CONSTRUCT can be returned to the 

source graph or can be extracted into a new graph, depending on the user needs.  

Query functionalities of SPARQL support extracting data from data graph, but cannot 

meet the requirements of inserting new, external data. For these purposes, SPARQL 

Update language should be used. 

3.5.2 SPARQL Update 

As defined by W3C, SPARQL update is a companion language to SPARQL query and 

is used for executing updates to the RDF data graph (W3C, 2013). It reuses SPARQL 

query syntax and allows to insert, delete, load and clear data graph as well as to create 

new and drop existing graphs.  

Instead of writing new triples when data is to be added to the graph, SPARQL update 

allows to add new content using query pattern (Hogan, 2020). Here, instead of SELECT 

and WHERE, it uses INSERT DATA statements to express what the query should insert. 

For example, if area value is the new information to be attached to admUnit:Gvozd 

resource in the graph, the insert triple query will have the following form (Example 3.12): 

 Example 3.12 

namespace 

geo: http://example.com/geometry/ 

xsd: http://www.w3.org/2001/XMLSchema# 

INSERT DATA { 

admUnit:Gvozd geo:hasArea “212.4”^^xsd:double . 

} 

Although primarily designed as a query language for semantic web, SPARQL is also a 

communication protocol (“P” in the SPARQL) that allows communication of client with 

the server in the context of web services (Allemang & Hendler, 2011). In SPARQL, server 

for this protocol is called SPARQL Endpoint and represents the access point to knowledge 

stored in data graph (triplestore). When trying to access the data, client sends a request 

containing SPARQL query to Endpoint’s URL, Endpoint executes this request against the 

data in the graph and sends query results back to the client in the requested format (e.g. 

http://www.w3.org/2001/XMLSchema
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JSON). Setting up a SPARQL Endpoint can rely on predefined solutions such as Docker 

platform (Docker, 2025) or GraphDB SPARQL Endpoint (Ontotext, 2025). 

3.6 Semantic Web and Population Disaggregation 

Spatial data integration is the central part of population disaggregation and Hasani et al. 

(2015) emphasize that the semantic web has the potential to improve this integration 

through exploitation of ontologies and RDF data model. Further on, Muscetti et al. (2022) 

suggest that managing the increasing amount of available data requires automated 

processes, which De Meester et al. (2020) associate with the benefits of Semantic Web. 

This can be directly applied to the domain of population disaggregation where geospatial 

data is constantly included in newly developed methods seeking improved disaggregation 

accuracy. This means Semantic Web applications are becoming crucial for automated 

executions (De Souza Neto et al., 2018; Bednár et al., 2024). However, despite their 

potential, functionalities of the semantic web in population data domain are currently 

being used mainly to disseminate semantically enriched data (e.g., Wong et al., 2024). 

Literature review shows limited availability of ontologies describing population 

disaggregation as a process which clearly indicates that research in this area is highly 

needed, especially given the relevance of population data in modern day decision making. 

To best of authors knowledge, the only approach to semantical modelling of population 

disaggregation is proposed by King (2019). In her work, King proposes a semantical 

framework for very detailed population counts estimate, at address level, in a continuous 

temporal scale that observes how population changes in time and space. To achieve this, 

the framework is divided into three parts modelling spatial, temporal and attribute 

domains. Spatial domain details how population is allocated in space, temporal domain 

monitors how population changes over continuous time and attribute domain attaches 

attributes such as activity types that might affect population presence or absence in space 

and time. To estimate population with high spatial resolution and in continuous time, the 

ontology uses geographic data (addresses, topographic objects) in combination with 

population-informative data (residence, visitor data, …). To model the data, ontology 

introduces three high-level classes: Region, Place and Temporal Signature, and subclasses 

it for specific needs of data. For example, Residential buildings are subtype of Address 
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which is a subtype of Place. Place is the main concept of the ontology and represents 

locations where people engage in some kind of activity, residential, working or leisure. 

Places are linked to Regions, e.g. statistical regions or topographic areas, and to Temporal 

Signature that define its temporal span (King, 2019). By setting the ontology this way, the 

model is capable to observe spatial distribution of population across very detailed time 

references and reason about population counts on a specific location in a given moment 

of time.  

Even though highly detailed, such approach features disadvantages within a broader 

application context. The most limiting factor of the model is that it relies on availability of 

high-resolution spatiotemporal population data to estimate population counts. This causes 

model not to be universally applicable as such data are not always available to users. 

Further on, framework uses one disaggregation method which is firmly incorporated into 

ontology structure. This is beneficial when such detailed results are needed, but in some 

cases when users have limited access to data and only need informative population counts, 

e.g. in preliminary analysis for urban planning, other disaggregation methods could better 

serve the needs.  

As described in section 2.2.5 (Practical Implementation of Spatial Population 

Disaggregation), scientific community emphasizes that disaggregation domain lacks 

practical solutions that would support widespread creation of high detailed population 

data. While model proposed by (King, 2019) contributes to it from a scientific point of 

view, it does not consider existing approaches to disaggregation methods. A solution that 

would combine both, a population disaggregation as a process, and potential of semantic 

web automation would therefore better support needs of the community. 

According to De Meester et al. (2016), central to automation are semantically described 

executable procedures that define tasks, such as algorithms and parameters, and their 

connection to results. By modelling procedures as concepts within an ontology, the model 

becomes flexible, enabling the inclusion of new methods, automatic procedure discovery 

and execution, and reuse of the model because the conceptual modelling is independent 

of data instances. 
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Benefits of modelling population disaggregation as a process within an ontology are 

multiple. Ontology represents formal knowledge about the domain which means it is 

capable of capturing domain’s main concepts and their mutual relations. This will allow 

expansion of semantic web knowledge base and allow reuse of this specific knowledge in 

other alike applications. Furthermore, ontologies are based on RDF, a simple data model 

that effectively bridges the issue of integration of data from different sources. This means 

that published data will be easily integrated in the disaggregation process while publication 

of new knowledge and data could seamlessly lead to more accurate population estimations, 

which is another important benefit. 

Creation of spatiotemporal population disaggregation ontology is based on the 

understanding of its basic requirements. As explained in the section 2.2.1, population data 

tied to a source zone is being disaggregated to target zones using source zone’s 

characteristics or spatial ancillary data. This implies that the disaggregation process relies 

on integration of statistical data (population counts) with geospatial data (source zone, 

ancillary data) while considering their time references. From semantical perspective, 

disaggregation ontology should therefore model a process that integrates data from three 

different domain ontologies. In line with the best recommendations for semantic web 

development, where reuse of existing knowledge should be prioritised rather that creating 

new knowledge, the following chapter will make a review of existing ontologies relevant 

for population disaggregation process. 

3.7 Research Relevant Domain and Task Ontologies 

Within the Semantic Web, numerous ontologies have been developed to describe 

geospatial, statistical, temporal, and process-related domains. While these ontologies often 

refer to the same underlying concepts, they represent them differently to accommodate 

specific user requirements and perspectives. 

3.7.1 Geospatial Domain Ontologies 

According to Kaladzavi et al. (2017), geospatial data is described in three data levels: 

semantic, geometric and spatial relations level. Semantic level deals with the nature and 

aspect of objects, spatial relations observe how object relate and interact with other objects 

while geometric level deals with representation of their shape and location on the surface 
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of the Earth. Based on this classification, different ontologies for different data levels can 

be developed.  

Collection of ontologies SWEET conceptualizes knowledge of space for Earth related 

sciences using OWL language. Developed in 2004, SWEET act as an upper-level 

ontologies for geospatial data in which spatial extents, e.g. country, and relations, e.g. 

aboveOf, are considered special cases of numeric extents and relations. Due to its broad 

meaning concepts, this ontology is not suitable for detailed domain knowledge 

representation and is rather use for interoperability among systems (Raskin & Pan, 

2005). 

The GeoNames ontology is a formal representation of geospatial knowledge providing a 

shared vocabulary for describing places and their relationships, serving as schema layer 

for GeoNames database (Tao et al., 2024). All features in the ontology are represented 

as points and described using SKOS ontology (Simple Concept Organization System) 

while their features are described in OWL. The ontology is used to describe concepts 

such as names, places, administrative subdivisions, and uses latitude and longitude 

coordinates of World Geodetic System 1984 (WGS84) to represent position of the 

feature (Kaladzavi et al., 2017). While it does support point feature representation, 

GeoNames does not support other geometric representation types, such as lines and 

polygons which limits its usability in applications interested in geometric relations among 

features, e.g. population disaggregation methods (GeoNames, 2025). 

The iCity-Geometry Ontology is a vocabulary designed for representing and managing 

geometric information within the context of urban environments and smart cities. It 

builds upon existing geometry concepts like points, lines and polygons, but tailors them 

for the specific needs of urban informatics and intelligent city applications. The ontology 

includes data property asWKT to allow geometry representation in Well Known Text and 

offers limited types of spatial relation, e.g. exterior, interior, partOf (Katsumi, 2025).  

Today, the most common vocabulary in the domain of geospatial data is GeoSPARQL, a 

standard proposed by the Open Geospatial Consortium (OGC). Introduced for 

representation of geospatial data in RDF, GeoSPARQL allows not only to represent the 
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data but to spatially reason about it which is highly beneficial when moving from data 

representation to data exploitation (OGC, 2012). 

In GeoSPARQL, geospatial data is represented using three main classes: Spatial Object, 

Feature and Geometry. While Spatial Object describes anything that exists in space, 

strictly defined as to have shape or position, Features represent discreet object that can 

be uniquely identified. Geometry of such features is represented separately, using 

Geometry class. This dual representation of a single object using individuals of Feature 

and Geometry allows to make independent statements about what features are and how 

they are represented which at last makes it possible to reason separately over each aspect 

of the object. To link feature with its geometric representation, hasGeometry property is 

used (Figure 3.7) (OGC, 2024). 

 

Figure 3.7 

GeoSPARQL vocabulary core classes and properties. Simple Features, Egenhofer & RCC8 

represent groups of qualitative spatial relations (from OGC, 2024) 
 

To fully describe geospatial domain, three main classes have standard properties that are 

used to make statements about represented objects. These properties are not mandatory, 

but optional depending on the use case. For example, Spatial Object class uses 

hasMetricSize property to indicate the length of the object in meters and Feature uses 

hasCentroid property to link its individual to point representing centroid of its geometry. 

For Geometry class, formal properties define how geometry must be structured. For 

instance, hasSerialization links geometry individual with its text serialization while asWkt, 

a subproperty of hasSerialization, describes that the geometry format must be of type 
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Well Known Text. GeoSPARQL’s inclusion of WKT geometry representation makes a 

direct connection to definition and hierarchy of geometries defined in OGC Simple 

Feature Standard. This not only ensures interoperability but also impacts way objects are 

perceived and conceptualized. More comprehensive list of properties tied to GeoSPARQL 

main classes is given in table (Table 3.6): 

Table 3.6 

GeoSPARQL vocabulary main classes and properties (summarised from OGC, 2024) 
 

Name Definition Domain Range 

geo:SpatialObject 

geo:hasMetricSize 
geo:hasMetricLength 
geo:hasMetricArea 
geo:hasMetricVolume 

The size/ length/ 
area/ volume of 
Spatial Object in 
meters 

geo:SpatialObject xsd:double* 

geo:Feature 

geo:hasGeometry Spatial 
representation for a 
given feature 

geo:Feature geo:Geometry geo:hasBoundingBox Minimal enclosing 
box of a feature 

geo:hasCentroid Aritmetic mean 
position of all 
geometry points 

geo:Geometry 

geo:coordinateDimension Number of axes in 
definition of CRS 

geo:Geometry 

xsd:integer 

geo:isEmpty If geometry has no 
information 

xsd:boolean 

geo:hasSerialization Links geometry with 
text-based 
serialization 

rdfs:Literal 

geo:asWKT WKT/ GML/ geoJSON 
serialization of 
geometry 

geo:wktLiteral 

geo:asGML geo:gmlLiteral 

geo:asGeoJSON geo:geoJSONLiteral 

*xsd: http://www.w3.org/2001/XMLSchema# 
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Unlike other geospatial ontologies, GeoSPARQL includes qualitative and quantitative 

spatial constructors that allow it to perform spatial reasoning. With these constructors, 

the machine is able to reason about spatial relations between objects e.g. proximity of two 

spatial objects (metric distance). GeoSPARQL provides three main sets of topological 

relation predicates (qualitative constructs), Simple Feature, RCC8 and Egenhofer, giving 

users a flexibility based on their needs and the underlying data's level of formal rigor. With 

these relations, computer can infer which geometries are equal, disjoint, contained or 

within other geometries or intersect, touch, cross and overlap (OGC, 2024).  

The use of GeoSPARQL vocabulary in population disaggregation ontology can be 

beneficial for two main reasons. Firstly, wide adoption of the vocabulary ensures diversity 

of geospatial data that could be used to improve accuracy of disaggregation results. 

Secondly, its spatial reasoning capabilities tend to meet the requirements of spatial 

analysis which disaggregation is founded on. These make GeoSPARQL highly applicable 

in the domain of population disaggregation modelling. 

3.7.2 Statistical Domain Ontologies 

In the domain of statistical data, several ontologies exist. These ontologies describe 

different aspects of statistical data, ranging from production to representation. For 

example, STATO (Statistics Ontology) is oriented towards statistical data creation 

process and includes descriptions of statistical tests, their conditions of application and 

resulting outcomes (STATO Project, 2014) rather than statistical data itself. Following, 

GSIM ontology (General Statistics Information Model) is a complex, top-level domain 

ontology used to define, manage and use data and metadata in statistical production 

process. It describes classes which are input and output in production of statistics and 

model concepts in four major sections, business, exchange, concepts and structures 

(Dreyer et al., 2016). 

The SDMX (Statistical Data and Metadata eXchange) Ontology is a formal 

representation of the SDMX standard by ISO (ISO:TS 17369), which is a foundational 

framework for the exchange of statistical data and metadata. The SDMX ontology 

structures statistical data as observations organized by dimensions, measures, and 

attributes, grounded in code lists and concept schemes, and tied together in datasets by 
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data structure definitions (Cyganiak et al., 2010). As SDMX is heavy and detailed, its use 

is more tied to institutional internal data exchange where data must strictly conform to 

SDMX standard. In contrary, for external dissemination of data, a W3C recommendation 

RDF Data Cube (QB) vocabulary is more convenient. QB is inspired by the SDMX 

ontology, shares the same concepts, but is lighter and prioritise ease of use. Main QB 

components are represented in Figure 3.8. 

 

Figure 3.8 

RDD Data Cube vocabulary main classes and properties (modified from W3C, 2014b) 
 

QB uses several main classes, qb:DataStructureDefinition, qb:ComponentProperty, 

qb:DataSet and qb:Observation to describe statistical data (Figure 3.8). Data Structure 

Definition class sets structure for organization of statistical data according to dimensions, 

measures and attributes, collectively referred to as components. Dimensions describe 

what the observation applies to, e.g. spatial unit, measures name the phenomena observed 

and attributes add metadata, e.g. unit of measurement (W3C, 2014b). Framework 

defined by Data Structure Definition is used to create dataset which stores all individuals 

of observations (real data). To connect all the classes, the ontology uses several main 

properties: qb:structure to connect qb:DataSet with qb:DataStructureDefinition, 

qb:component to connect qb:DataStructureDefinition with qb:ComponentProperty, and 

qb:dataSet to connect qb:Observation with qb:DataSet. Flexibility and wide adoption of 
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QB vocabulary in representation of statistical data makes it applicable for modelling of 

population in population disaggregation process.  

3.7.3 Time Domain Ontologies 

Modelling time in ontology can be general-purpose or tied to a specific use case. For 

example, Time event ontology (TEO) is developed specifically to model clinical 

applications (Li et al., 2020). On the other side, Ontology of Time for the Semantic Web 

provides a structured framework for representing temporal knowledge, distinguishing 

between instants (points) and intervals (spans), and defining their relationships through 

primitives like before, begins, and inside. The ontology models durations, calendar and 

clock units, and time zones, enabling annotation of events with both abstract measures of 

time and concrete calendar references. While designed to support reasoning over 

temporal constraints on the Semantic Web, it suffers from computational complexity and 

limited compatibility with OWL reasoning (Hemalatha et al., 2012; Hobbs & Pan, 2004). 

OWL Time, a W3C candidate recommendation, is a lightweight ontology for modelling 

temporal concepts in Semantic Web. It models time through time:Instant and 

time:Interval classes, subclasses of a top-level class time:TemporalEntity (Figure 3.9). 

Instant class refers to fixed points in time while Interval describes spans from start instant 

to end instant. It also provides properties to express relations like ordering (time:before, 

time:after), containment (time:inside) and relative positions in time (time:hasBeginning, 

time:hasEnd) (W3C, 2022). Simplicity of time semantic descriptions makes OWL-Time 

easily applicable for the modelling of temporal component in proposed population 

disaggregation ontology. 
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Figure 3.9 

OWL-Time core classes and properties (modified from W3C, 2022) 

3.7.4 Task ontologies 

Modelling tasks as part of problem-solving activities can rely on different ontologies. For 

example, Semantic Sensor Network (SSN) ontology, based on Sensor, Observation, 

Sample and Actuator (SOSA) ontology, is comprehensive ontology for describing 

sensors, their observations, the systems they are part of, and the related processes. Its 

Procedure module contains three main classes, sosa:Procedure, ssn:Intput and ssn:Output 

that are used to describe a workflow, plan or computational method, i.e. steps that lead to 

reproducible results (Figure 3.10). Procedure class relates to ssn:Input and ssn:Output via 

ssn:hasInputOnly and ssn:hasOutputOnly properties. Classes of Procedure module are 

linked to classes of other modules to comprehensively model the entire process, from 

system description, features to results (W3C, 2017). 
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Figure 3.10 

Semantic Sensor Network ontology procedure related classes and relations (modified from 

W3C, 2017) 
 

Ontology Web Language for Services (OWL-S) is an upper-level ontology designed to 

describe properties and capabilities of web services in computer-interpretable form that 

enables automatic discovery, invocation, composition and monitoring of web services. The 

ontology consists of three main components, Service profile, Service grounding and 

Service model used to describe what the service does, how to access it and how it does it. 

The Service profile covers information transformation functionality of the service that 

deals with representation of inputs and outputs. Main class of this profile is Profile which 

uses hasParameter and its subproperties hasInput and hasOutput to describe what service 

model expects as input and output. Within the Service Model, the Process Ontology 

defines classes such as AtomicProcess, CompositeProcess, and SimpleProcess, and uses 

properties like hasInput, hasOutput, hasPrecondition, and hasEffect to formally describe 

the behavior of services (Figure 3.11) (W3C, 2004a).  

Even though OWL-S ontology describes problem-solving methods, tasks and activities in 

domain independent way and is highly expressive, it expressiveness can make it too 

complex for efficient reasoning. 
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Figure 3.11 

Ontology Web Language for Services selected main classes and properties (modified from 

W3C, 2004a) 
 

The Function Ontology (FNO) is a lightweight ontology inspired by the OWL-S that 

describes signatures of the functions. Functions in the context of FNO are processes 

performing a specific task by associating inputs to outputs (De Meester et al., 2023). The 

ontology is technology independent and can support development of web services in any 

physical implementation. To do so, it includes three complementary vocabularies to 

describe mappings, implementations and compositions of function concepts to actual code 

implementation. While main classes in the ontology are fno:Function, fno:Parameter, 

fno:Output and fno:Execution, connected with fno:executes, fno:expects and fno:returns 

(Figure 3.12), these are linked to classes in complementary vocabularies to allow creation 

of web services. For example, fno:Execution links function’s parameter placeholder with 
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the actual data in RDF, and fnom:Mapping maps this placeholder to corresponding 

argument of a function in e.g. java code. The technology independent and lightweight 

semantic descriptions of FNO makes this ontology easily applicable in different domains 

of use. For this reason, it will be reused in the proposed population disaggregation ontology 

of this thesis. 

 

Figure 3.12 

The Function ontology core classes and properties (modified from De Meester et al., 2023) 
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When creating an ontology, there is no one correct way to model the domain of interest. 

Depending on the planned purpose of use and anticipated extensions to it, ontology of a 

domain can be modelled in viable different ways (Noy & McGuinness, 2001). 

Usually, knowledge about the domain is extracted from a top-down or bottom-up 

conceptualization approach. Bottom-up approaches use more specific concepts of the 

domain to shape main classes of the ontology, while in top-down approaches the 

assumption is that generic underlying framework must be generated first to ensure 

appropriate concept integration at lower levels. But no matter the approach, Arp et al. 

(2015) propose eight principles for ontology creation that should ensure ontology’s 

widespread accessibility and usability: 

1. Realism. Concepts represented in the ontology should be based on general features 

of reality 

2. Perspectivalism. Reality can be represented in different ways and all of them can 

be accurate 

3. Fallibilisim. Reality might never be revealed in all its totality and ontologies are 

revisable to reflect new discoveries 

4. Adequatism. Entities of reality must be considered as they are, not how they 

support reduction to other entities 

5. Reusability. Ontologies must reuse knowledge that already exists in other relevant 

ontologies 

6. Balance Utility and Realism. No sacrificing of realism should be made to adhere to 

short-term ontology usability  

7. Open End. Ontology is an ongoing process: should be maintained and updated with 

new knowledge 

8. Low-hanging Fruit. Intuitive concepts are defined first and used to define more 

complex one 

When creating an ontology, two main inputs should be considered: new ontology must be 

built on existing ontologies and should appropriately model domain of interest. Noy & 
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McGuinness (2001) propose to start the ontology creation by reflecting on four main 

questions that will help to define the scope of the domain modelled in ontology.  

What is the domain that the ontology should represent? 

Determining the domain of ontology will narrow down the number of concepts that should 

be considered. By focusing on specific concepts, it will be easier to determine 

representative classes and relations between them. Also, clear domain definition will help 

to keep the focus during creation, which is highly appreciated during dilemma situations. 

Scope of the domain can also be determined using competency questions, i.e. questions 

ontology is set to answer. These will help to filter out classes of interest. 

What is the intended use of the ontology? 

Intended use of the ontology can help to define the level of detail in class description. 

Depending on the users, ontology should include assertions that are user relevant. For 

example, if the user of ontology is data scientist, ontology should include information about 

data license. The aim of this question is to make ontology relevant for its intended users. 

What question the ontology should provide answers to? 

To find the most suitable domain model, competency questions will reveal how classes 

should be connected in the ontology. This will ensure that domain of interest, user needs 

and the purpose of the ontology are fully aligned. 

Who will use and maintain the ontology? 

Answering this question will affect how ontology should be documented and explained. 

For example, if the ontology is written in language that user of the ontology is not familiar 

with, ontology should include mappings between these languages. Also, if the creator of 

the ontology will not maintain it, ontology must be well documented to support future 

upgrades. 

Following these questions, main inputs for the creation of spatiotemporal population 

disaggregation ontology can be drawn. To start with, the ontology must model 

spatiotemporal population disaggregation, which is a process occurring on statistical data 

tied to spatial boundaries. This limits the scope of the ontology to modelling how these 
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data interrelate and the way they are used within the process. Also, statistical data is a 

variable of time so time consideration must also be given attention here. Ontology is 

intended to be used within automated web services that will perform the disaggregation 

on user demand which means the ontology must be suitable for implementation in web 

service technologies. Further on, as the main purpose of spatial disaggregation is to 

estimate more accurate spatial distribution of population, the ontology should answer a 

simple question of how many people lives within user area of interest. Finally, the ontology 

is to be used by ontology designers and web developers so the descriptions provided should 

primarily meet their needs. 

4.1 Population Disaggregation Ontology (POPDO) 

Given the discussion in chapter 3.6 (Semantic Web and Population Disaggregation) 

spatiotemporal population disaggregation ontology (POPDO) is an application ontology 

that reuses concepts from spatial, statistical and time domain ontologies and links them to 

semantical descriptions of tasks to form semantically enriched application in the domain 

of interest. To achieve this, POPDO can be divided into three layers that model how actual 

data is to be used in the process. For clarity, these layers are named POPDOd (domain), 

POPDOr (role) and POPDOp (process) (Figure 4.1). 

 

Figure 4.1 

Three-layer POPDO ontology architecture. POPDOd captures data representation concepts 

(domain), POPDOr describe roles for data from POPDOd and POPDOp accesses data in 

POPDOd via POPDOr roles 
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4.1.1 POPDO domain layer (POPDOd) 

POPDOd is the domain part of the POPDO ontology that describes how existing domain 

ontologies are connected into a meaningful model suitable for interconnecting data 

relevant in the disaggregation process. Starting with the idea previously described in 

chapter 2.2.1 (Population Disaggregation), it’s the spatial component of population data 

that allows application of spatial disaggregation techniques in population disaggregation 

process. For this reason, geospatial domain is put in the core of the model and time 

reference, and statistical data are treated as its attributes (Figure 4.2). 

 

Figure 4.2 

Conceptual representation of POPDO domain layer. Classes and properties are highly abstract 

concepts representing basic domains and interdomain relations in POPDOd. 
 

Figure 4.2 illustrates the main integration approach within POPDOd in which classes 

from different domains form a uniform ontology model. This model is the basis for data 

representation in POPDO. 

Forming the core of POPDOd, geospatial domain includes four main classes to represent 

spatial objects (Figure 4.3). SpatialObject is the master class with the main purpose of this 

class being to represent a concept of any kind of object that can be spatially identified. By 

making this class non-specific and highly conceptual, model will enable unrestricted 

integration of concepts at different levels of domain ontologies included. For this reason, 

this class is considered not to have direct instances.  

The proposed definition of the SpatialObject class meets the description of SpatialObject 

class from the GeoSPARQL vocabulary (namespace geo). To keep the POPDOd model 

clean from semantical overload while maintaining intended purpose of the class, 
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SpatialObject is treated as equivalent class of geo:SpatialObject, i.e. geo:SpatialObject is 

reused as a class in POPDOd of POPDO ontology. 

 

Figure 4.3 

Base classes and properties representing geospatial data in POPDOd 
 

As discussed in chapter 2.2.3 (Method using ancillary data), process of population 

disaggregation is based on a variety of geospatial data which can be structured in different 

forms. Within the geospatial community, main data forms are vector and raster so to 

make ontology consider their differences, and consequently to support wide ontology 

applicability, SpatialObject class is specialized through its three main subclasses. 

Representation of vector data in POPDOd model is proposed with two classes, Feature 

and Geometry, both subclasses of SpatialObject. While Feature represents a concept of 

discreet object that is easily identified in space, its boundary and spatial extent is 

considered within Geometry. This dual representation of the same object allows to make 

semantical distinction between what an object is and how it is represented in geometrical 

sense and tends to add flexibility while using the proposed conceptualization model. Also, 

this allows to make more specific statements about the object. For example, it is possible 
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to differentiate between point, line and polygon representation of vector geometry (Figure 

4.3), which is specifically beneficial in the realm of population disaggregation. 

Description of Feature and Geometry classes in POPDOd align with the description of 

Feature and Geometry classes in the GeoSPARQL vocabulary, and again, these are 

reused in POPDOd rather than semantically reproduced. Such reuse not only reduces 

semantical redundancy but also enriches POPDO with existing relations that hold in 

GeoSPARQL. For example, features can be linked to their geometry using an existing 

geo:hasGeometry property, geometry can be serialized using well-established data types 

(e.g. geo:WktLiteral) built on top of recommended geospatial standards (e.g. Simple 

Features), and queries over spatial data can employ spatial functions that are not 

contained in the basis of SPARQL language. 

Following, Coverage class is introduced to represent raster data used in the disaggregation 

process. Unlike Feature and Geometry, Coverage is introduced as a high-level class. This 

is mainly because of lack of raster representation ontologies. However, its high-level 

abstraction allows it to easily expand to other concepts in raster representation domain 

ontologies. As it is used for the definition of geospatial data, this class is made subclass of 

SpatialObject class. 

Data from geospatial domain serve as carriers of statistical information about population 

and it allows contextualization and appropriate interpretation of represented phenomena. 

Within POPDOd this information is used to model connection between statistical data 

and geospatial ontology (Figure 4.2Figure 4.4). Observation class of RDF Data Cube 

vocabulary (QB) is used to describe instances of statistical data by describing them with 

three kinds of statements to provide context. Dimension statements, as described in 

chapter 3.7.2, define circumstances of the observation, or in this case referent spatial 

and/or temporal extents.  

In POPDOd, Observation class description complies with the semantical interpretation 

of Observation class in QB (namespace qb). For this reason, qb:Observation is introduced 

as a reference class for statistical data in POPDOd (Figure 4.4). By reusing its semantics, 

statistical data will be given full context in statistical domain (structure and consistency), 

and a way to be linked to concepts from other related domains.  
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Figure 4.4 

Base classes and properties representing population (statistical) data in POPDOd 
 

Although covering statistical domain, POPDOd only uses relevant classes and properties 

from QB (Figure 4.4). This does not limit interoperability as data can still be linked to 

other concepts in the QB but keeps POPDO ontology clean and concise. 

Within QB, qb:DataStructureDefinition defines how qb:Observation will be structured. 

Here, object properties qb:dimension, qb:attribute and qb:measure of 

qb:ComponentSpecification class point to their corresponding specific properties that will 

be used to link actual data to structure definition. These specific properties are individuals 

of qb:DimensionProperty, qb:AttributeProperty and qb:MeasureProperty classes. 

POPDOd considers two qb:DimensionProperty individuals for statistical data, namely 

reference area (refArea) and reference period (refPeriod) for spatial and temporal 

contexts. To keep the good practice, these individuals are reused from SDMX-dimension 

vocabulary (namespace sdmx-dimension) and not reinvented. SDMX-dimension 

describes sdmx-dimension:refArea as property that points to geographic area statistical 

data relates to while sdmx-dimension:refPeriod points to instant or period of time 
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statistical data refers to (United Nations Department of Economic and Social Affairs, 

2019). 

In QB, qb:DataSet class groups observations based on a common characteristic. As single 

population dataset usually contains multiple statistical records tied to different 

geographical regions, common characteristic for the dataset is time reference. For this 

reason, sdmx-dimension:refArea is introduced in POPDOd as object property that links 

qb:Observation to geo:SpatialObject, while sdmx-dimension:refPeriod links qb:DataSet to 

concept of time (Figure 4.4). 

Given that proposed disaggregation model considers time as attribute of population and 

geospatial data, time is introduced in POPDOd as Instant class from OWL Time ontology 

(namespace time) (Figure 4.5). The class is intended to add time reference for spatial and 

population data, which is needed for temporal adjustment of population in the 

disaggregation process. As previously described, POPDOd links statistical and time 

domain ontologies using sdmx-dimension:refPeriod object property of qb:DataSet and it 

introduces hasTimeStamp object property to link geo:SpatialObject to its time stamp 

(Figure 4.5). 

Given that the POPDO model considers timestamps for temporal part of the modelling, 

the model introduces years as time references. Within the model, years are introduced as 

individuals of xsd:gYear datatype from XML Schema Definition Language and linked to 

time:Instant using time:inXSDgYear datatype property. XML Schema is a W3C 

recommendation that describes primitive literal datatypes (e.g. string, double) within 

semantic web. To ensure POPDO is interoperable, these datatypes and data properties 

are again reused from existing vocabularies and ontologies (XSD Schema and OWL-

TIME ontology), and not user created.  
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Figure 4.5 

Core classes and properties of POPDOd domain layer 
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4.1.2 POPDO role model (POPDOr) 

As discussed in chapter 2.2.4 population disaggregation approaches all share the same 

conceptualization: methods disaggregate statistical data from source zone to target zone(s) 

using either geometrical characteristics of source zone or spatial ancillary data (Figure 

4.6).  

 

Figure 4.6 

General approach to population disaggregation using spatial disaggregation methods 
 

Within the context of population disaggregation, source zone and target zones are areas 

of (un)known population, while ancillary data is any kind of geospatial data that can 

inform about spatial presence of population. When linked to entities of the real world, 

these concepts may represent different things. For example, source zone can be 

administrative or statistical unit and although fiat (human agreed upon) objects, these are 

usually considered tangible, with precise boundary and an area. To reflect the real nature 

of concepts within the model, POPDOr classes are not considered as actual data but 

rather as roles geospatial data take within the disaggregation process. These classes and 

their relations are represented in Figure 4.7. 
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Figure 4.7 

Core classes and properties of POPDOr role layer 
 

Semantical description of role classes in Figure 4.7 should be done thoughtfully as 

disaggregation ontology must be universally applicable across different disaggregation 

methods. To start with, general concept in POPDOr is DisaggregationRole. This class is 

meta class that represents all kinds of roles data can have in the process. As such, 

DisaggregationRole is not considered to have individuals. 

Roles in the disaggregation process can be divided into two major types: Zone and 

AncillaryData. Within POPDOr this is formalized by making these classes subclass of 

DisaggregationRole. Zones represent areas which disaggregation occurs at and are a 

direct linking to intrinsic components of the disaggregation method. However, to make a 

clear conceptual distinction between what is the input in the disaggregation process and 

what is the output, these zones are split into SourceZone and TargetZone classes. Again, 

both are considered types of Zone and are made its subclasses. Finally, AncillaryData 

class represents additional data that could help determine weights for population 

distribution during the disaggregation process. 

POPDOr classes are role classes which means they do not accommodate raw geospatial 

data. Instead, geospatial data from POPDOd become individuals of these classes if they 

meet requirements of roles in the disaggregation process. These requirements are imposed 

by semantical restrictions in the description of every POPDOr class.  

Source zone in the spatial disaggregation process is considered any spatial unit that has 

population attribute. In the POPDOd, relation between population data and geospatial 
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data is defined by sdmx-dimension:refArea object property. However, this property is 

directional, meaning it has domain of qb:Observation and range of geo:SpatialObject. To 

meet the requirement of source zone, POPDOd is extended with isRefAreaFor property 

oriented in the opposite direction. Instead of introducing isRefAreaFor as new and fixed 

property, dependency between these two is modelled using owl:inverseOf. This means 

that reasoner will read isRefAreaFor is inverse of dmx-dimension:refArea and infer 

domain of the former is the range of latter and vice versa. However, this new property 

makes spatial unit a candidate for source zone role, but it does not make it a source zone. 

To make a clear statement of what is source zone, restriction axioms in class definition 

were added. These restrictions defined SourceZone as a role class of all individuals that 

are both geo:SpatialObject and serve as reference area for at least one observation 

individual via isRefAreaFor property. Since source zone is a prerequisite for spatial 

disaggregation, POPDO considers even more strict semantical definition - it defines 

SourceZone as a defined class (owl:equivalentTo): 

SourceZone ⊑ DisaggregationRole 

SourceZone ≡ SpatialObject ∩ ∃isRefAreaFor.Observation 

This means that every individual of SourceZone is individual of geo:SpatialObject (is 

geospatial object) that serves as reference area for observation, but it also means that 

every geo:SpatialObject that serves as reference area for observation is a source zone. 

This strict definition will allow reasoner to automatically classify spatial objects with 

population data attribute as source zone for the disaggregation process. 

The definition of the target zone role is less restrictive than that of the source zone, 

primarily due to the nature of the concept in the disaggregation process. While the source 

zone is a prerequisite for disaggregation and possesses a clearly defined meaning, the 

target zone simply refers to the area to which data is disaggregated, and it must not 

coincide with the source zone. Consequently, the target zone role can be defined as a 

subclass of geo:SpatialObject that is disjoint from the source zone class: 

TargetZone ⊑ geo:SpatialObject 

TargetZone ⊓ SourceZone ⊑ ⊥ 
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AncillaryData role class also has less restrictive description than SourceZone class. Any 

kind of geospatial data that is used in disaggregation process can be defined as ancillary 

data as long as it is not source zone. This distinction from source zone arises from the fact 

that if no ancillary data exists, disaggregation is performed using characteristics of the 

source zone, and these are not considered ancillary data. Semantical description of 

AncillaryData role class axioms can be defined as follows:  

AncillaryData ⊑ geo:SpatialObject 

AncillaryData ⊓ SourceZone ⊑ ⊥ 

Restrictions in class definition make it clear for reasoner what the class looks like. Without 

explicitly stating these, data could have multiple roles within the same disaggregation 

process which is not always the case. In other words, if something is not stated, it does not 

mean it is false. This comes important when considering semantical description of 

AncillaryData in respect to TargetZone. According to the definition of ancillary data in 

the context of population disaggregation, the same geospatial dataset can serve dual 

purposes: it can act as ancillary data to improve the disaggregation results, and can 

function as target zones for the disaggregated population, such as land use classes. To 

accommodate this flexibility, no disjoint restriction is imposed between the AncillaryData 

and TargetZone classes. While the main condition is fulfilled, data being individuals of 

geo:SpatialObject, it could be both ancillary data and target zone at the same time. 

Figure 4.8 illustrates Class axiom graph. Nodes of this graph represent role classes from 

POPDOr and edges represent logical axioms that define these classes. 
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Figure 4.8 

Axiom graph for POPDOr classes based on POPDOd concepts. Dashed class represents 

defined class 
 

4.1.3 POPDO process model (POPDOp) 

In chapter 2.2.4 disaggregation process is described as a procedure in which spatial 

weights are determined and applied to aggregated population counts to create better 

spatial distribution of population. This review informs about main procedure steps that 

occur during the disaggregation process and can be illustrated as follows (Figure 4.9): 

 

Figure 4.9 

Description of POPDO as four-phase disaggregation process: core disaggregation phases 

extended with population temporal adjustment and aggregation phases 
 

Disaggregation method can be described using weight computation and disaggregation 

phases, which is why these two phases form the core of POPDOp model. But, since 

disaggregation can be considered wider process than this, these two phases are sometimes 



Chapter 4  

94 

not sufficient to describe all included steps. For example, population data is highly 

impacted by its time reference and in many cases it must be manually updated before 

entering the disaggregation process. Further on, there also may exist a need to determine 

a total number of people living within a spatial unit of arbitrary spatial boundaries. If these 

boundaries do not coincide with used geospatial ancillary data, disaggregation must be 

done on smaller spatial units whose population values are then aggregated to resolution of 

the arbitrary unit. Because of this, POPDOp extends core disaggregation phases with two 

additional phases, temporal adjustment and aggregation, which makes it suitable to 

describe more comprehensive disaggregation processes (Figure 4.9). These phases are 

therefore referred to as disaggregation steps. 

Each disaggregation step represents a group of procedures whose goal is to perform 

calculations and ensure disaggregation step’s result. Temporal adjustment, for example, 

includes temporal update procedures that result in more accurate population data at 

source zone. Weight computation conceptually represents a group of procedures that 

result in spatial weights needed in the disaggregation process, and disaggregation describes 

procedural steps that lead to disaggregated population data. At last, aggregation performs 

aggregation procedure over disaggregated data to indicate population counts within 

arbitrary spatial boundaries. As these procedures perform actual computations, within 

POPDOp they are considered algorithm steps. 

Arising from requirements of general population disaggregation method, POPDOp main 

classes should represent conceptual groupings where each grouping accommodates more 

domain-specific procedures. These procedures work as a pipeline that define how specific 

part of the process is to be executed to produce result. In a broader context, this allows to 

describe disaggregation method as groups of nested procedures within overall 

disaggregation process. 

POPDOp model within POPDO is based on The Function Ontology (FNO) described in 

section 3.7.4 and extended to accommodate specificities of population disaggregation 

process. The FNO is a lightweight task ontology intended to describe processes in 

technology independent way, and it offers comprehensive semantical descriptions 
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applicable not only to procedures as individual steps, but also to linking of these into an 

executable pipeline.  

The fno:Function is the central class of FNO (namespace fno) and POPDOp model 

(Figure 4.10). It represents any kind of process where input is linked to output making it 

a highly abstract concept universally applicable. To model a process, fno:Function 

establishes relations to classes representing input and output via standard object 

properties, fno:expects and fno:returns. While conceptually these properties link 

functions to inputs and outputs, formally, FNO ontology defines ranges of these properties 

to be of type rdf:List (Figure 4.10). By doing so, the fno:Function class is allowed to have 

a list of and not a single input/output value. Inputs and outputs in FNO are described with 

fno:Parameter and fno:Output classes. Both classes represent only concepts and can be 

interpreted as semantical descriptions of data placeholders rather than explicit data.  

 

Figure 4.10 

Core process description classes and properties of FNO ontology reused in POPDOp (modified 

from De Meester et al., 2023) 
 

To describe data within fno:Parameter placeholder, FNO uses three main properties. The 

fno:type property defines what kind of data, i.e. data literal or individual of another class 

placeholder can take as input value. The fno:required allows to mandate existence of data 

within the placeholder. If the value (Boolean) is true, the parameter must receive data and 

cannot stay empty. Finally, the fno:predicate property makes it possible to link the 

placeholder to actual data values. However, it only describes how this can be done, and 
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not how it is actually done. For this reason, the range of fno:predicate is rdf:Property class, 

i.e. another property. This new property is then used by the executor class to store values 

of a specific type in the placeholder during implementation.  

These three main classes of FNO are enough to semantically describe the bare act of 

processing. However, only semantical description of the process in general terms is not 

sufficient for its execution. This requires additional classes that will model how real data 

are placed into placeholders of fno:Parameter and fno:Output, and finally, how these are 

connected and used within concrete implementations. 

To enable execution of procedures, FNO introduces fno:Execution class (Figure 4.11). 

Main purpose of this class is to establish semantical connection between real data in 

Semantic Web (RDF) and their corresponding placeholders in FNO. To do so, it uses 

RDF object (property) of fno:predicate as its own data property. The fno:Execution acts 

upon fno:Function, formally using fno:executes property and it serves as interface class to 

enter the process (function execution) from outside of the semantic web during 

implementation. 
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Figure 4.11 

Selected classes and properties of FNO ontology needed for the execution of a function in 

POPDOp (modified from De Meester et al., 2023) 
 

Even though fno:Execution adds important piece of knowledge to description of process, 

this is still not sufficient for most of real-world applications. While execution of the process 

can indeed happen using SPARQL query language, but, as its name state, this is a query 

language meaning it has limited possibilities to support procedural nature of the process. 

For this reason, new piece of knowledge needs to be added to align semantical descriptions 

of ontology with more powerful execution technologies like Java. Within FNO, this gap is 

bridged with two additional classes, fno:Mapping and fno:Implementation, that model how 
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functions, based on their semantical descriptions of inputs and parameters, are 

implemented outside of the Semantic Web (Figure 4.11). 

The fno:Implementation class provides semantical descriptions of practical 

implementation of executions, usually linking to external platforms outside of the realm 

of Semantic Web. It gives instructions for the implementation framework of semantic 

descriptions. Instances of this class usually point to pieces of programme code developed 

for specific calculation problems.  

To make function description applicable to external implementations, it is needed to 

reconcile descriptions in ontology with their meanings in external technologies. For 

example, individual of fno:Parameter has the semantic interpretation of argument in 

Python method. In FNO, this linking is done with fno:Mapping class that, again, 

semantically describes how ontology concepts are used in implementation instances 

(Figure 4.11). The fno:Mapping uses fno:function property to link to fno:Function and 

fno:implementation property to link to fno:Implementation class. By using 

fno:parameterMapping, fno:methodMapping and fno:returnMapping properties, 

individuals of fno:Mapping unambiguously map parameters and outputs of function 

individuals to method’s arguments in external execution scripts, often by their name or 

position in method definition. This way, a connection between function’s parameter and 

output in ontology is linked to its counterpart in execution technology. 

As sometimes execution of one function requires other functions to be executed too, FNO 

introduces the possibility of a composition. Composition in FNO is considered alternative 

to implementation described above and defines semantically how parameters and outputs 

of functions are connected in a flow (Figure 4.12). The fno:Composition class defines what 

the composition is and how it looks like. Using fnoc:composedOf property, it establishes a 

connection with fnoc:CompositionMapping that maps how parameters and outputs of one 

function are forwarded to the next function (fnoc:mappingFrom and fnoc:mappingTo 

properties). Finally, fnoc:CompositionMappingEndpoint defines which functions and 

their parameters and outputs are used in this process (fnoc:constituentFunction, 

fnoc:functionOutput, fnoc:functionParameter properties). 
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Figure 4.12 

Selected composition-related classes and properties from FNO ontology within POPDOps 

(modified from De Meester et al., 2023) 
 

While reusing concepts from FNO in POPDOp model, the nested characteristic of the 

disaggregation process had to be preserved which raised a challenge of how to fit 

POPDOp semantics into a semantical framework of FNO.  

To achieve fully automated population disaggregation process in POPDO by reusing FNO 

knowledge, several statements about FNO should be drawn: 

1. fno:Function is highly abstract class defined only as a process that links inputs to 

outputs, 

2. fno:Execution populates parameters and outputs of only one function, i.e. every 

fno:Function individual has its own fno:Execution individual, 

3. fno:Execution individual links to only one individual of fno:Mapping, meaning it 

can only guide execution of one fno:Function individual, 

4. fno:Composition works with fno:Functions and is alternative to implementation. 
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Given the requirements of the population disaggregation methods and its execution, the 

following requirements need to be met: 

1. Population disaggregation should be automated, i.e. it should take aggregated data 

and produce disaggregated data.  

This means that population disaggregation method should be of type fno:Function 

so that fno:Execution instance can populate its parameters with actual data (source 

zone, ancillary data) and define the output (target zone) 

2. Disaggregation process (method) is a sequence of disaggregation steps performing 

specific parts of the calculation. 

This means that every step has an input that is either source zone (and ancillary 

data) or output from the previous step. This leads to conclusion that every group 

should be of type fno:Function so that fno:Execution instance can map these values 

into correct placeholders. 

3. Disaggregation steps contain one or more procedures where each one does atomic 

calculations. 

This means that every procedure that does calculation needs to have specified 

input and output. Therefore, every procedure should be individual of fno:Function. 

Fully functional and universally applicable population disaggregation process should be 

automated and scalable in execution, i.e. functions should be chained to ensure data flow. 

If every concept of population disaggregation process is simply treated as function of FNO 

and chained into a composition, semantical descriptions of procedures would be either 

very generic or very detailed but lacky in comprehensiveness. In other words, 

disaggregation method would be described as only one generic function for the entire 

process, or as a sequence of individual procedures which are not tied under the single 

disaggregation method. On the other side, if combination of these different level 

semantical expressivities is tried, this could break the process logic and potentially end in 

inexecutable process. To avoid such problems, proposal in POPDOp is to create subclasses 

of fno:Function that will represent three levels of procedures in the disaggregation process 

(Figure 4.13). DisaggregationMethod class represents the entire disaggregation method. 
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For individual of this class, fno:Execution individual defines parameters and output, i.e.  

source zone and target zone in the disaggregation process. DisaggregationStep class 

represents phases of the disaggregation process and exploits potential of composition to 

get input from disaggregation method level. AlgorithmStep class accommodates 

procedures of disaggregation step performing calculations. By being fno:Function, this 

class will reuse composition expressivity to get input from disaggregation step, and via 

implementation it will be linked to external scripts that will perform calculations. 

 

Figure 4.13 

POPDO procedure classes as subclasses of fno:Function 
 

New classes of POPDOp, introduced as subclasses of fno:Function, add the procedure-

level knowledge into the semantical model and allow creation of modular disaggregation 

process. By doing so, all parts of the POPDOp meet the requirements of population 

disaggregation process while adhering to expressivity of FNO model. Structuring the 

model this way, it ensures that population disaggregation method, as top level procedure, 

has input source zone and output of type target zone, while the rest of the execution 

workflow is based on semantical description contained in composition and 

implementation individuals.  

Proposed spatiotemporal population disaggregation ontology is a top-level domain 

ontology in the realm of population disaggregation. While it considers general concepts 

that hold in the domain, its practical application requires refinements to meet the needs 

of a specific disaggregation method. Entire POPDO model with its three-layer 

architecture can be found it appendices section (Appendix A). 
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Within this chapter, application of the POPDO ontological model in practical 

disaggregation is described. For proof of concept in this thesis, general POPDO ontology 

is conceptually extended to support disaggregation based on Building Area Dasymetric 

Mapping method (BDASY). 

Testing of the ontology was made on Trogir city administration unit (Croatia), using 

official statistical data (census population counts and population yearly changes) from 

Croatia National Bureau of Statistics and official geospatial data (administrative unit 

boundaries and building footprints) provided by the State Geodetic Administration. To 

test the ontology, several steps were conducted (Figure 5.1). First, to suit the needs of 

application, data required by the BDASY method were retrieved and preprocessed in 

external software. Secondly, concepts in the ontology were formally structured, i.e. 

serialized for automated processing by the computer using Protégé, an open-source 

ontology-creation software. Following, schema individuals and data individuals were 

structured in RDF data model while adhering to concepts from POPDO. Next, ontology 

and RDF triples were merged into a meaningful knowledge graph in GraphDB graphical 

database compliant with W3C standards. At last, automated execution disaggregation of 

population data was showcased in a local environment using predefined python scripts. 
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Figure 5.1 

Population disaggregation testing workflow 
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5.1 Setting the Agenda 

5.1.1 Building Area Dasymetric Mapping Method 

Based on research by Sapena et al. (2022) which suggests methods using building 

footprints as ancillary data tend to provide more accurate results and given the fact that 

this data in Croatia is provided as open data by official sources, dasymetric mapping using 

building footprints was decided to be the core disaggregation model. For simplicity of 

showcasing, the method adopted builds on top of the core model by considering only area 

of buildings. 

Building Area Dasymetric Mapping (BDASY) is a type of dasymetric mapping where 

building footprints are used as main ancillary data to develop spatial weights in the 

disaggregation process. Besides disaggregation, the process was extended to temporally 

adjust population data from census reference year to year of interest, and to give results 

aggregated to arbitrary spatial unit. 

Disaggregation algorithm in BDASY is based on modified approach proposed by Mennis 

(2015). This algorithm uses area ratio and population density ratio to calculate total 

fraction at the level of residential buildings which is then used as weight in the 

disaggregation of population. More precisely,  
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where ŷ
f
 is the estimated disaggregated population for every residential building in the 

source zone, yg is the population of the entire source zone, Af is the area of a residential 

building, ARf is the area ratio per building per residential class (if more than one), D̂c is 
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estimated population density of a residential building class (if more than one), DRc is 

population density ratio per residential building class (if more than one). 

5.1.2 Data Sources 

Identified by the DBASY, disaggregation process seeks for administrative unit spatial 

representation for the source zone, building footprints polygons for ancillary data and 

statistical data on population counts and yearly population changes. All these datasets in 

Croatia are provided as open data by government sources. 

Population Data 

Data on population in Croatia is produced and maintained by the National Bureau of 

Statistics. It is an integral part of Census of Population, Households, and Dwellings which 

is conducted with decennial temporal resolution. The most recent census is the one 

conducted in 2021 based on traditional approach of enumeration. Official time reference 

for the census is 31 August 2021 (Official Gazette of The Republic of Croatia, 2021). 

Scope of the Census along with methodology is defined by The Act on The Census of 

Population, Households and Dwellings in the Republic of Croatia in 2021, which is aligned 

with relevant European regulations (EC 763/2008 and EC 2017/712). Census collects 

36 variables about population (e.g. age, gender). These are disseminated in profiles per 

spatial unit, in aggregated form and with person as unit of measure. National Bureau 

provides the data in tabular form in .xlsx file format or in 1km x 1km vector grid (Kević & 

Kuveždić Divjak, 2025). Although enumeration unit is the finest spatial resolution for the 

dissemination, its data are only available upon request. The finest spatial unit level of 

openly available population data is a settlement. All data from the census are available 

under Open Government License. 

Within this research, population data on a level of city/municipality is used for the 

disaggregation. As the research only concerns total number of people living within the 

area, different population profiles of data in the dataset have no impact on the result and 

any can be used for the disaggregation purposes. 

Census population data is tied to time reference of 2021 and may be obsolete. To track 

population changes, National Bureau of Statistics publishes natural population changes on 
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a year level. This data is aggregated data from official birth and death registers and given 

up to a level of city/municipality in .xlsx file format and under Open Government License 

(Croatian Bureau of Statistics, 2023). For simplicity of practical implementation, 

POPDO ontology disaggregation was showcased for year 2022. For this reason, natural 

population changes for year 2022 were used in addition to Census 2021 population count. 

As defined in The Act (Official Gazette of The Republic of Croatia, 2021), Census data 

collection and dissemination is tied to spatial units, which are kept and mainstained by the 

State Geodetic Administration. 

Geospatial Data 

Official geospatial data on administrative units and buildings in Croatia is produced and 

maintained by the State Geodetic Administration (SGA). Administrative units are part 

of the The Register of Spatial Units and building data are maintained in Cadastre records. 

Spatial units of The Register of Spatial Units are classified in eight levels. Levels are 

hierarchical and spatial units of lower-level fit within boundaries of the upper-level. City 

and municipality are the same level units and within the Register are referred to as local 

self-government units (Official Gazette of The Republic of Croatia, 2020). For the 

simplicity of meaning within the disaggregation process, these will be referred to as 

administrative units. 

As already explained, disaggregation within this testing will be performed on the level of 

city/municipality, more specifically on the spatial boundaries of City of Trogir in Split-

Dalmatia County. Spatial unit of interest is provided under Administrative unit dataset 

downloadable via ATOM service in .gml file format from SGA Geoportal. Provided data 

is INSPIRE compliant meaning that it aligns with conceptual rules of INSPIRE data 

specification (State Geodetic Administration, 2025). Every unit in this dataset is 

described with multiple attributes, e.g. name or type of administrative unit. Data is 

provided in projected coordinate system (ETRS89/LAEA, EPSG: 3035) and under 

Open Government License. Time reference for the data is 2025 but no records of 

boundary change for administrative unit was found. For this reason, it was used in the 

disaggregation process with time reference of 2022. 
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Data on buildings in the disaggregation process were retrieved from Cadastre records, 

also maintained by the SGA. The data is INSPIRE compliant and available via ATOM 

service in .gml file format. As originally maintained by the Cadastre, buildings are 

provided on a level of cadastre units which are lower-level units when compared to city. 

Every building in the dataset has, among others, has unique identifier and use code 

attribute. Use codes identify the intended use of the building (e.g. residential, industrial) 

and are of relevance for the disaggregation process. Data is provided in projected 

coordinate system (HTRS96/TM, EPSG: 3765) and under Open Government License. 

As data is retrieved via atoms service, its time reference is of more recent date than the 

reference year of the disaggregation process. This, however, is not a concern as the main 

purpose of the testing is the proof of concept of automated disaggregation using semantics 

in ontology definition. 

5.2 BDASY Formal Representation 

Two main steps in creation of BDASY ontology can be distinguished. In the first step, 

POPDO ontology is extended with new classes representing concepts specific to BDASY, 

while the second step refers to how this knowledge is formalized in digital environment. 

5.2.1 BDASY: extension to POPDOd 

To accommodate method specific data, geospatial domain of POPDOd is extended with 

five main classes (Figure 5.2). The SpatialUnit class is introduced as a subclass of Feature 

class, and it represents spatial units used for the dissemination of official statistical data 

(e.g. statistical or administrative units). For the purpose of ontology showcasing, 

AdministrativeUnit is introduced as a subclass of SpatialUnit to match the characteristics 

of population data provided by the National Bureau of Statistics. AreaOfInterest and 

BuildingFootprint classes are defined as subclasses of geo:Feature. Class AreaOfInterest 

describes arbitrary spatial unit that was used as target zone in the disaggregation process 

and BuildingFootprint class represents buildings as spatial objects. Besides being described 

as subclass of geo:Feature, this class is given datatype property hasUseCode which allows 

to attach use code attribute to its individuals in ontology. To extract only residential 

buildings and later use them as ancillary data, ResidentialBuildingFootprint class is added 

in the model. This class accommodates all buildings whose use code value is interpreted 
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as residential. Members of the class are not added manually but are rather assigned 

automatically by the reasoner if they meet the condition of being a building and have 

residential value of use code, i.e. ResidentialBuildingFootprint is a defined class in BDASY 

ontology. 

 

Figure 5.2 

BDASY extension classes to POPDO ontology 
 

Once modelled conceptually, BDASY ontology was formalized using Protégé to create 

TBox axioms for the disaggregation knowledge graph. 

5.2.2 BDASY realization in Protégé 

Protégé is an open-source platform for building and managing ontologies developed by 

Stanford Center for Biomedical Informatics Research at the Stanford University School 

of Medicine (Musen, 2015). It features graphical interface that supports explicit modelling 

of domain knowledge using classes, properties, logical axioms and individuals based on 

Web Ontology Language. Creation of new ontologies can be done on top of existing 

ontologies which are imported from local file or from web location. Its main strengths are 

easy ontology creation and reasoning capabilities that assure logical consistency and 

inference of new knowledge. Protégé version 5.6.5 with supported ELK, HermeT, Ontop, 

Pellet and jcel reasoners was used for creation of BDASY ontology within this research. 
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Ontology creation in Protégé starts by defining new ontology template with basic 

information about the ontology; its URI, version, description and preferred namespace. 

BDASY ontology was assigned http://www.example.com/ontology/buildingareadasy/ URI 

with bdasy namespace, and this is where definition of ontology concepts will be stored. 

BDASY ontology builds on top of POPDO concepts, so these were imported in Protégé 

to form the basis. As POPDO concepts are based on domain ontologies (GeoSPARQL, 

OWL Time, RDF Data Cube, The Function Ontology – with its multiple vocabularies) 

these were also retrieved through import of POPDO URI. 

Once the ontology template was in place, AdministrativeUnit, AreaOfInterest and 

BuildingFootprint classes were added in Class hierarchy as subclasses of POPDO classes 

and and ResidentialBuildingFootprint is added as subclass of BuildingFootprint (Figure 

5.3). Classes of the active ontology are marked in bold letters to distinguish it from classes 

pertaining to imported ontologies. Adding a new class to Class hierarchy only adds 

taxonomy information. To provide more specific meaning, additional information can be 

assigned via Class Description module (Figure 5.4).  

Classes in class hierarchy can be placed manually, so called primitive classes, or based on 

the axioms from the class definition. In that case reasoner infers about the class and 

defines its place in the hierarchy. Protégé also allows to create defined classes whose 

members are determined by necessary and sufficient conditions expressed in equivalent 

axioms. 

 

Figure 5.3 

BDASY classes added as subclasses of POPDO ontology classes within Class hierarchy in 

Protege  

http://www.example.com/ontology/buildingareadasy
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Figure 5.4 

ResidentialBuildingFootprint class described as defined class within Protégé 
 

As seen in Figure 5.4, ResidentialBuildingFootprint is described as a defined class whose 

members must be of type BuildingFootprint and have use code value 100, 101, 102 or 

103. These values are individual-specific and come from the dataset. 

Object properties establish relations between classes (and hold for their individuals) and 

in Protégé these are added as subclasses of owl:topObjectProperty, superproperty in 

OWL. Object properties from POPDO are sufficient for BDASY so no new object 

properties were added. In contrast to object properties, datatype properties link class to a 

literal value. Within BDASY, one new datatype property, hasUseCode, was added to 

hierarchy as a subproperty of owl:topDataProperty of OWL. The property was assigned 

domain of BuildingFootprint and range of string data type to constrain its semantical 

meaning (Figure 5.5). 
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Figure 5.5 

BDASY hasUseCode datytype property definition 
 

Besides providing semantical axioms for knowledge representation, Protégé adds the 

possibility to attach annotations to every concepts. These are not used in reasoning and 

serve to provide more informative description in human readable style. For this reason, 

they are omitted from the model in this stage. 

Finally, Protégé also supports capabilities of adding class individuals. This option is helpful 

when working with a small amount of data but can become exhausting and time 

consuming when dealing with large datasets like building footprints. Instead of manually 

inserting thousands of buildings for test area, assertions about these in the Abox of 

knowledge base were made in an external data manipulation software. 

However, to check ontology consistency with a reasoner, several individuals were added 

in the Protégé. These individuals do not represent real world data and are used for testing 

of reasoning only. 

To check if building footprints individuals are assigned to residential building footprints, 

and consequently to ancillary data class, two instances, Building123 and Building234 

were created. Building123 was attached use code 100, and Building234 use code 200. 

Based on the restriction axiom ResidentialBuildingClass, only Building123 should be 

inferred as individual of (Figure 5.6). 
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Figure 5.6 

Reasoner inference results on ResidentialBuildingFootprint based on BuildingFootprint 
individuals 
 

As ResidentialBuildingFootprint is also subclass of AncillaryData, Building123 should also 

be inferred as its individual. Figure 5.7 shows reasoner can infer this knowledge meaning 

that ontology is consistent. The same test was run with both Trogir instance for 

Administrative unit (Source Zone role) and AreaOfInterest for AreaOfInterest class 

(Target Zone role) (Figure 5.8). 

 

Figure 5.7 

Reasoner inference on AncillaryData based on ResidentialBuildingFootprint class descipriont 
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Figure 5.8 

Reasoner inference on SourceZone and TargetZone based on individuals of AdministrativeUnit 
and AreaOfInterest classes 
 

Reasoning on semantics in ontology showed no inconsistencies exist which means 

ontology is ready for the implementation. 

5.3 Data in RDF 

Populating ontology with real world data requires transformation of data from their native 

data structure into RDF data model. As previously described, this is feasible within 

Protégé software but can become tiring in case of large volume of data (e.g. building 

footprint data). For simplicity and more direct data transformation, Ontotext Refine was 

used for these purposes. 

Ontotext Refine is a free application developed by Ontotext. It features graphical interface 

that allows fast cleaning, mapping and automated conversion of structured data into RDF 

model. It is an adoption of OpenRefine, open-source software for data curation, for 

working with Ontotext GraphDB graph database (Ontotext, 2022). Ontotext Refine, data 

curation application, and Ontotext GraphDB, graph database, are in the basis of practical 

implementation within this research so compliance of these tends to solve potential issues 

of data interoperability. 

Before transforming data into RDF triples, data had to be preprocessed and structured in 

formats readable by Ontotext Refine. For geospatial data, QGIS (version 3.22.14 

Białowieża) was used as transformation tool while population data was cleaned using 

Excell from MS Office 365. 
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5.3.1 Data Preprocessing 

As mentioned earlier, Trogir administrative boundary was provided with other 

administrative units in a single dataset, in .gml format and in ETRS89/LAEA coordinate 

system. This caused several issues for intended use in disaggregation process. First, 

disaggregation was planned only for Trogir so the geometry of Trogir unit needed to be 

extracted. This was done in QGIS by filtering attribute table by the value of name in text 

column. Extracted unit was then reprojected from ETRS89/LAEA into HTRS96/TM 

projected coordinate system to ensure its overlap with building data. For representation 

in GeoSPARQL, the unit needed explicit geometry representation in Well Known Text 

(WKT). As QGIS has limited field lengths for attributes, representing geometry in new 

column of attribute table would cut out parts of WKT syntax. For this reason, spatial unit 

was exported from QGIS into PostgreSQL database (v17) and added geometry in WKT. 

Ontotext Refine offers connection to database as a form of data import so Trogir 

administrative unit was imported into OntotextRefine directly from PostgreSQL. 

Building footprints from Cadastre were provided in separate datasets on a level of 

cadastre unit, so these needed to be merged. Once imported into QGIS, they were merged 

using Merge vector layers tool. For every building in the dataset, explicit geometry 

representation in WKT was then added as a new value in the attribute table. This was 

feasible as building polygons have less points in the geometry. As number of buildings 

exceeded 6000 objects, these were imported into Ontotext Refine via already established 

infrastructure of PostgreSQL database. 

Data on population counts and count changes were much lighter and only needed filtering 

to extract relevant data. This was done in MS Excell by removing unnecessary rows and 

columns. Once filtered, .xlsx files were imported manually into OntotextRefine. 

Disaggregation to area of interest requires this area to be provided by the user. For the 

testing purposes, arbitrary rectangle within Trogir administrative unit was created in 

QGIS, added geometry representation in WKT and imported into OntotextRefine for 

further modelling. 
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5.3.2 Source Data Individuals 

OntotextRefine reads imported data and stores it into tabular structure (Figure 5.9). This 

form is then used to assign values to a specific poisition in RDF triple. 

 

Figure 5.9 

Arbitrary area of interest (target zone) representation in Ontotext Refine 
 

RDF mapping module within Ontotext Refine is where RDF triple components are 

created. It consists of three main parts: base URI, qnames ribbon and triple creator. Base 

URI is the namespace for storing newly created triples, qnames ribbon allows to add URIs 

of external ontologies whose concepts are reused in newly created triples, e.g. BDASY 

ontology, and triple creator is where RDF triples are made from tabular data. Ontotext 

offers capabilities to define concepts to be constant values (e.g. fixed concept URI), 

dynamic values (changing across rows), or extracted from the table based on a GREL 

filtering rule (GREL, language for manipulation and organization of data). These 

capabilities of Ontotext add flexibility that is needed when creating RDF triples from 

tabular data. 

Datasets imported into Ontotext Refine represent individuals of classes from BDASY. 

Therefore, these individuals should be defined within the same namespace as their 

respective classes. But, to ease the distinction between individuals and schema concepts, 

every dataset was given its own base URI: 

Trogir Administrative unit admunit: http://www.example.com/data/admunit/ 

Area of interest areai: http://www.example.com/data/areainterest/ 

Building footprints build: http://www.example.com/data/building/ 

Population count popcnt: http://www.example.com/data/popcount/ 

Population change popcng: http://www.example.com/data/popchange/  

Approach with base URIs different from ontology URI however increased the risk of 

error in alignment of individuals with their respective classes once imported in graph 

database. This is mainly because ontology concepts in Ontotext are manually defined, and 

http://www.example.com/data/admunit/
http://www.example.com/data/areainterest/
http://www.example.com/data/building/
http://www.example.com/data/popcount/
http://www.example.com/data/popchange/
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any typing error could make reasoner not to recognise triples as statements about 

ontology class individuals. For this reason, special attention was given to qnames definition 

and concepts naming. Example of how tabular data were mapped to ontology concepts 

during RDF triples creation is given below (Figure 5.10). 

 

Figure 5.10 

Example of RDF mapping for building footprint datas 
 

Figure 5.10 represents the schema for mapping of building footprint data to BDASY 

ontology concepts. Following this schema, buildings were converted from tabular 

representation into RDF triples of the Semantic Web. Each row from the table was 

defined as individual of bdasy:BuildingFootprint class and was linked to its geometry 

representation in WKT, timestamp for year 2022 and assigned use code value. Once the 

mapping schema was completed, data was transformed in RDF and exported in .ttl file 

format. Given like this, it was now ready for import in graph database. 

5.3.3 BDASY Schema Individuals 

Along data individuals, to make the ontology fully operational, process classes must also 

be instantiated to embody process logic of a concrete disaggregation method. These 

individuals are referred to as schema individuals. But, before describing the schema and 

its individuals, it is necessary to understand the logic of process execution in BDASY. 

BDASY ontology supports semantical descriptions of the disaggregation process. 

SPARQL as a query language can read these descriptions and be aware of the workflow, 

but it has limited procedural capacity needed for process execution. For this reason, 

ontology schema must be somehow linked to external technologies to perform 

calculations. To be more precise, BDASY allows do describe disaggregation process as 
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composition of compositions of functions in which only algorithm step functions 

(execution procedures) are implemented using external technologies (Figure 5.11). Here, 

the entire process is based solely on description of the workflow, not the actual data, so 

schema composition individuals are needed to precisely guide data flow between functions 

in the process. 

 

Figure 5.11 

Composition of compositions as disaggregation process execution logic 
 

Disaggregation process schema of BDASY, based on method description in section 5.1.1 

and execution logic in Figure 5.11, can be illustrated as follows (Figure 5.12): 
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Figure 5.12 

BDASY disaggregation process schema combining semantical descriptions and external 

execution scripts 
 

Main components of the schema (Figure 5.12) are individuals of three-level BDASY 

functions. BuildingAreaDasymetricMapping, a DisaggregationMethod function 
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individual, is considered semantical orchestrator of the process. This individual was 

assigned parameter and output placeholders values. These placeholders take what is to 

represent source zone, target zone and ancillary data. To fill the placeholders, function 

corresponding Execution individual was created. To ensure process is dynamic, i.e. flexible 

and not fixed to specific data, instead of sourcing the function’s parameter placeholders 

with concrete URIs of data, placeholders were given SPARQL queries in string form. This 

way, number of input URIs per placeholder could be arbitrary number. This is especially 

important for building footprint ancillary data as number of residential buildings in the 

dataset is not a priory known. Inputs of the disaggregation method function are then 

forwarded to individuals of disaggregation step functions in the composition who pass it 

to algorithm step functions. Individuals of Mapping class for algorithm step function link 

these values to individuals of Implementation class who call the python script and perform 

calculation. Following semantical description of output, calculated values are shared 

among functions. 

Given that these individuals don’t represent real data, but rather serve execution, they 

were created manually following Turtle serialization syntax. An alternative to manual 

creation was to define them in Protégé, but this proved to be less efficient and more time 

consuming. Full list and definition of schema individuals can be found in the Appendix C. 

Again, to make a distinction between schema individuals and schema classes, every group 

of schema individuals was assigned its unique base URI: 

Functions fun: http://www.example.com/function/ 

Execution exe: http://www.example.com/execution/ 

Mapping map: http://www.example.com/mapping/ 

Composition comp: http://www.example.com/composition/ 

Once all the data was ready, it was imported in graph database for automated 

disaggregation testing. 

5.4 Automated Execution Setup 

Last step before testing semantical descriptions of disaggregation process is to establish 

reachable graph database which will act as a server and provide data upon request. 

Ontotext GraphDB is a free, standards-compliant graph database. It features reasoner 

http://www.example.com/function/
http://www.example.com/execution/
http://www.example.com/mapping/
http://www.example.com/composition/
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capability and offers SPARQL Endpoint for access to data. GraphDB fulfils all the 

requirement imposed by the testing of disaggregation process, so it is chosen as technology 

for showcasing the BDASY ontology in practice. 

Data within GraphDB is organized in repositories and every repository represents 

individual graph database. New repository was created for population disaggregation. To 

ensure reasoning capabilities, repository used OWL2 RL ruleset. Unlike Protégé whose 

reasoners supports full DL reasoning, GraphDB ruleset reasoning profiles are optimized 

for different purposes (W3C, 2012). For this reason, they have restricted expressivity 

suited for specific needs. OWL2 RL is a W3C recommended OWL language profile 

optimized for applications requiring scalable reasoning that seeks efficiency and trades off 

full semantic expressivity. This directly affects reasoning on BDASY ontology axioms 

where source zone role, defined as equivalent class of intersection with existential 

qualification of literal, cannot be directly populated with individuals. To overcome this 

limitation in testing stage, real world data was made individuals of role classes instead of 

domain classes. This setup allowed process execution while not altering ontology 

consistency proved by Protégé reasoning (section 5.2.2). 

To allow OWL2 RL to make reasoning, files in GraphDB must be inserted in specific 

order. Ontology schema is inserted first to provide reasoning framework which is then 

populated by schema individuals and finally data individuals (Figure 5.13). Once 

imported, resourced in the graph can be visualized using Visual graph module of GraphDB 

(Figure 5.14). 
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Figure 5.13 

GraphDB interface with imported ontologies and schema and data individuals 

 

Figure 5.14 

Representation of Trogir as source zone of BDASY ontolog in GraphDB database 
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Execution of the semantical process is done with python orchestrating script. Script uses 

disaggregation method’s execution individual URI as its main input. This URI is used to 

query for disaggregation method function and its implementation individuals in GraphDB 

database by sending SPARQL queries to SPARQL Endpoint. Following this pattern, the 

script reaches algorithm step function individuals that point to algorithm python scripts 

performing calculations. There is in total seven algorithm python scripts that calculate (1) 

adjusted population of source zone in time, (2) area ratio, (3) estimated population density, 

(4) density ratio and (5) total fraction for residential buildings and perform (6) 

disaggregation and (7) aggregation to area of interest. Each of the algorithm scripts follows 

the same pattern, it receives URIs as its input, queries the database for data individuals, 

performs calculations as indicated by the method algorithm, alters the database with new 

statements and returns URIs of the spatial units for the next function in composition. 

Scripts are optimised for large amounts of data so querying and inserting new values is 

done in bulks of 500 objects per shot. While here only general description of Python 

script is provided, their full code can be found in the appendices section (Appendix D). 

5.5 Results  

After running the orchestrating process script, results were obtained. Every algorithm 

script made alterations to the database, so the results were attached to relevant concept 

URIs and can be extracted from the database using SPARQL queries. 

Temporal adjustment disaggregation step calculated adjusted population counts of the 

Trogir administrative unit using Simple Temporal Adjustment algorithm step. The 

population of Trogir for year 2022 is calculated by adding population changes of 2022 to 

population counts of Census 2021. The resulting population count is attached directly to 

the Trogir source zone using bdasy:hasAdjustedPopulation datatype property. The 

extracted values of population count, change and adjusted population tied to Trogir area 

are extracted from the database using SPARQL query (Figure 5.15). 
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Figure 5.15 

Temporally adjusted population counts: in a) SPARQL query to reach population count, change 

and adjusted population tied to Trogir source zone URI and in b) resulting values stored in the 

database 
 

Weight computation step calculated disaggregation weights using area ratio, estimated 

population density, density ratio and total fraction algorithm steps. Calculated values were 

attached to residential buildings using bdasy:hasArea, hasAreaRatio, 

hasPopulationDensity, hasDensityRatio, hasTotalFraction datatype properties and are 

extracted from the database using SPARQL query (Figure 5.16). 
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Figure 5.16 

Disaggregation weights per residential building: in a) SPARQL query to reach building area, 

area ratio, estimated population density, density ratio and total fraction attached to residential 

buildings URIs and in b) resulting values stored in the database 
 

Disaggregation step resulting values are calculated from temporally adjusted population 

and total fraction per residential building. Values are attached to buildings using 

bdasy:hasDisaggregatedPopulation data property and can be reached via building URI 

(Figure 5.17). 
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Figure 5.17 

Disaggregated population per residential building URI: in a) SPARQL query to reach 

disaggregated population values and in b) resulting values stored in the database 
 

In the final step, total population within arbitrary spatial unit (target zone) was calculated 

as a sum of values per residential buildings. Aggregated value was attached to area of 

interest individual in the database with bdasy:hasAggregatedPopulation data property 

(Figure 5.18). This value represents final output of the disaggregation in proposed BDASY 

method. Setting a SPARQL query on area of interest URI this value can be extracted 

from the database and used externally (Figure 5.18). 
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Figure 5.18 

Aggregated population of arbitrary target zone: in a) population value within graph database, b) 

SPARQL query to reach disaggregated population values and in c) resulting values stored in the 

database 
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5.6 Discussion 

Disaggregated population for Trogir administrative unit proved usability of BDASY 

ontology in population disaggregation process. Each individual result shown in section 5.5 

is directly impacted by semantical descriptions of data flow in the ontology schema. This 

was enabled with several key design choices of schema individuals supported by BDASY 

ontology. Firstly, the entire process was described as a composition of compositions which 

allowed to define only main inputs of the disaggregation method. These values were then 

passed to each disaggregation step based on semantical linking established by composition 

individuals. Secondly, main input values were not given as explicit data URIs, but as a 

SPARQL queries that queried for individuals of interest. This served well within weight 

computation step in which number of residential buildings was not a priory known and 

was to be determined by the dataset itself. Further on, algorithm scripts performed 

calculations based on inputs passed by the process workflow. These inputs were either 

SPARQL queries or lists of resulting data URIs from previous process step. This setup 

allowed conceptual description of data flow, where each algorithm step used only 

descriptions of input and output, query string or list, and not the actual data. This way, 

entire process remained simplified and not bothered with specific types of output of every 

algorithm step. Finally, main orchestrating script allowed to combine workflow of BDASY 

ontology schema with computations in algorithm scripts to create automated process. The 

script used disaggregation method’s execution instance URI to enter ontology schema and 

read execution sequence from descriptions of the workflow. This allowed fully automated 

processing where user in only responsible of providing main input data, while the rest of 

the execution is done based on the knowledge contained in ontology schema.  
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The primary goal of the research presented in this thesis was to develop an ontological 

model for flexible and automated spatiotemporal disaggregation of population across 

arbitrary spatial tessellations through the application of Semantic Web technologies. four 

specific objectives were formulated to ensure that the model is both sustainable and 

consistent with established disaggregation practices as well as existing knowledge within 

the Semantic Web. 

First objective was to define key concepts and spatial relations in spatial disaggregation 

methods that should be used as a backbone for the creation of ontological model. Within 

POPDO ontology, a general disaggregation method was described with several main 

classes that capture core domain knowledge. These classes consider two different but 

complementary parts of the disaggregation process, the domain, i.e. data used in the 

process, and the process itself, i.e. how the data is used to produce the result. Within 

domain part, proposed SourceZone, TargetZone and AncillaryData classes were 

introduced as semantical extensions of geospatial data. While this aligns with the 

consideration that it is the geospatial component of population data that allows spatial 

disaggregation, these classes within POPDO are considered geospatial roles rather than 

actual data. Such distinction between real data representation and roles in the 

disaggregation process allowed geospatial data to be represented in their native domain 

ontology and play the specific role required by the disaggregation process. This also 

allowed the distinction of semantic logic in what data really is and what it represents in 

the process. Process part of ontology with proposed DisaggregationMethod, 

DisaggregationStep and AlgorithmStep classes allowed modular and flexible description 

of the disaggregation process. While DisaggregationMethod is a general method that 

gathers specific procedures in a process, DisaggregationStep and AlgorithmStep provide 

the basis for multilevel disaggregation descriptions. Such an approach allows grouping of 

procedures of Algorithm steps within specific step of the disaggregation and thus creation 

of simple or more complex disaggregation methods. Timestamping of population data was 

assured with a relation hasTimeStamp to time reference. Linking geospatial and 

population data of POPDO to their time stamp allows user to choose the most relevant 

temporal version of the data and thus the creation of the most accurate population 
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estimation within a chosen disaggregation method. No spatial relations specific to spatial 

disaggregation were explicitly embedded in the POPDO ontology as literature review 

revealed these are method specific and used depending on the employed method 

algorithm. Proposed main classes and property of POPDO align with literature review on 

shared characteristics of spatiotemporal disaggregation methods. This ensures that the 

POPDO ontology is top-level ontology, universal enough it can be applied in case of any 

disaggregation process. 

Second objective of the thesis aimed to ensure interoperability of the proposed POPD 

ontology model by relying on existing knowledge in relevant domain and task ontologies. 

GeoSPARQL, QB (RDF Data Cube), OWL-Time and FNO (The Function Ontology) 

proved to have captured domain knowledges relevant for different parts of POPDO. 

GeoSPARQL formed the geospatial domain ontology in POPDO for several reasons. 

While it supports description of vector data via its geo:Feature and geo:Geometry classes, 

it also includes SpatialObject class which is general enough to accommodate other data 

types. Modern disaggregation methods include different kinds of ancillary data which can 

be both vector and raster, so SpatialObject class of GeoSPARQL served as a meta class 

that can accommodate these diversities. This means that in the future, when raster 

ontologies are developed, they can be easily integrated in POPDO via relation to 

SpatialObject class. Additionally, GeoSPARQL is an OGC recommended standard, so it 

is widely used for representation of geospatial data in Semantic Web. Its reuse in POPDO 

ensured wide ontology applicability and existence of large number of geospatial data 

directly applicable in the disaggregation process. QB vocabulary in POPDO is used for 

representation of population data. While POPDO reused only main QB classes and 

properties, linking of these within full QB vocabulary allows population data to be 

modelled as part of statistical records and as such reused within disaggregation process. 

Again, it is a recommendation standard (by W3C) for statistical data description which 

means all available data published in QB can be directly reused in POPDO. Further on, 

being inspired by SDMX ontology, QB includes possibility of linking to spatial units so no 

additional adjustments to the ontology were needed to fit the POPDO requirements. 

Temporal component of POPDO reused Instant class from OWL-Time ontology. Main 
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requirement of temporal representation in POPDO was to add time stamps to data to 

assess its suitability for disaggregation needs and time:Instant class provided the semantics 

needed. While reusing only one class from OWL-Time, its linkage to remaining classes 

in profile will allow to add disaggregation data in relation to other temporal concepts and 

give broader temporal context to disaggregation process. OWL-Time is a W3C candidate 

recommendation so its integration in POPDO ensured standardized time representation 

of concepts for the disaggregation process. Finally, FNO concepts shaped the process 

domain of the POPDO ontology. FNO is a light-weight ontology which means its 

expressivity is optimised for simple application in broad range of use cases. Within 

POPDO, main advantage of FNO is that it is general enough to describe a process as 

composition of compositions which fits the idea of disaggregation being modular and 

flexible. Although FNO ontology has no official recommendation status, its main benefit 

is that, in contrast to other process ontologies, it is technology independent meaning that 

disaggregation process can be implemented as a web service using different kinds of 

technologies which in turn allows wide range of users in wide range of application areas. 

Existing domain and task ontologies showed maturity of Semantic Web to cover domain 

knowledge of relevant concepts in POPDO so they could be reused with very few 

interventions. This makes POPDO fully interoperable with existing knowledge while 

disaggregation specific concepts add only necessary new knowledge to the knowledge 

base. 

Within the third research objective, disaggregation specific knowledge should have been 

tied to existing ontologies to develop a model of spatial disaggregation process. While 

aforementioned domain ontologies describe how data is to be represented in Semantic 

Web, task ontologies model components of the process that uses data. These different 

perspectives over real-world entities exposed conflict on semantical interpretation of 

domain data when compared to roles domain data plays in the disaggregation process. 

Proposed three-model ontology design for POPDO solved this conflict by grouping 

knowledge into semantically coherent groups. POPDOd model of POPDO is intended to 

establish semantical framework for data representation by keeping representation 

knowledge within a single layer of ontology. By reusing highly conceptual classes for the 
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creation of POPDOd base (geo:SpatialObject, qb:Observation and time:Instant), 

knowledge within domains can be easily extended without considering roles in POPDOr. 

POPDOr builds on top of concepts from POPDOd, i.e. classes from POPDOr serve as 

intermediator between POPDOp and POPDOd so process inputs and outputs do not 

reach data individuals directly. Because of this data are not explicitly linked to a 

disaggregation method but to a role placeholder which allows it to be reused in different 

methods without alterations. Also, to keep model semantically clean, POPDOr role 

classes contain restrictions on their members from POPDOd. Source Zone members are 

geospatial objects linked to population counts, ancillary data are geospatial data different 

from source zone, and target zone is unit different from the source zone. This ensures 

clear distinction of roles in the disaggregation process, so the data does not violate logic 

during disaggregation process. POPDOp model captures the knowledge of task ontology 

extended with disaggregation specific process classes. These concepts are not semantically 

aligned with data representation knowledge so POPDO considers them separately. This 

allows to make distinction between what data is, what is its role and how it is used within 

the disaggregation process. It also leaves option to make ontology extensions without 

altering existing semantics. Further on, by making DisaggregationMethod, 

DisaggregationStep and AlgorithmStep subclasses of fno:Function in POPDOp, 

disaggregation process can reuse FNO functionalities, which means it can be described 

as composition of compositions. This does not only allow composition directed dataflow 

and modularity in creation of semantically described disaggregation method, but it also 

ensures reusability of disaggregation and algorithm steps across methods without making 

description alterations. Structured in a three-domain approach, POPDO ontology is 

flexible and modular which were the main requirements in the ontology development 

process. 

Fourth research objective aimed to test the developed disaggregation model on a real case 

scenario. This aimed to prove three things. First, that POPDO ontology is abstract enough 

it can fit method-specific concepts without altering ontology structure, second, that 

ontology model is flexible enough to support any kind of procedural executions and third 

that it can support semantical description of the workflow and produce results. The testing 
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was performed using a Building Area Dasymetric Mapping method (BDASY), with its 

method specific types of geospatial data and algorithm calculation steps. BDASY concepts 

fit easily with POPDO ontology: census population data fit the statistical descriptions of 

QB concepts, building footprints extended geospatial classes to form more specific types 

of geospatial data and algorithm calculation steps were added as Algorithm step functions. 

This proved POPDO to be highly conceptual as it accommodated method specific 

concepts by making them more specific types of the core POPDO concepts. Further on, 

BDASY disaggregation method was proposed to include seven algorithm steps for 

different phases of the disaggregation process. These were easily added in the POPDO 

ontology as its multilevel function approach allowed to describe procedures and group 

them into disaggregation phases. This proved POPDO to be flexible and scalable to meet 

specific needs of different disaggregation methods. At last, BDASY ontology was 

implemented as dynamic and real time semantic web service. This required full semantic 

workflow description and multilevel procedure execution which POPDO successfully 

supported. As it reuses FNO, execution of BDASY disaggregation combined workflow 

semantics with procedural execution in Python which proved POPDO ontology to be 

powerful approach in the population disaggregation domain. 

In a broader context, successfully disaggregated data using an arbitrary disaggregation 

method based on population disaggregation ontology (POPDO) emphasized ontology 

approach potential in the domain of population disaggregation. When compared to 

traditional techniques like standalone tools (e.g. Swanwick et al., 2022; Monteiro et al., 

2018; Stevens et al., 2015) and platform extensions (e.g. Sleeter and Gould, 2008; Qiu 

et al., 2012), population disaggregation based on semantical knowledge has several main 

advantages. First, knowledge of the disaggregation process within POPDO is embedded 

in logical axioms, so the computer can perform disaggregation without an operator of 

sufficient knowledge and data manipulation skills. This allows easier access to 

disaggregated population data for users outside data community. Further on, knowledge 

stored in POPDO ontology can be reused and build upon across different disaggregation 

methods, which allows the user to choose between wider pallet of off-the-shelf 

disaggregation methods. Also, disaggregation via POPDO ontology has no data 
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preprocessing as data is already within the same data model. Another benefit is that cloud 

of semantical data is constantly growing so more disaggregation relevant data is available 

for use. When compared to web service tool solution proposed by Batsaris & Zafeirelli 

(2023), POPDO based disaggregation shows similarities and some upgrades. In both 

cases disaggregation is automated as a web service easing it for user to reach disaggregated 

data, but ontology approach is not limited to only specific data sources and methods and 

data can be easily extended using new knowledge in ontology. For existing web service tool 

this is not the case as new approaches and data would still be fixed within hardcode of 

programming language.  

However, POPDO also has limitations when it comes to population disaggregation 

process. For example, its domain layer mostly reuses data from existing ontologies which 

may become limiting factor if ontologies are not maintained or become deprecated. Also, 

model considers statistical region to be aligned with a definition of polygon in geospatial 

ontology. If this is not the case, statistical units might not be precisely linked to its spatial 

representation. Additional limitation is that the model considers temporal component as 

attribute of geospatial and population data. This leaves user of the ontology to reason 

about which data is suitable for the disaggregation considering its different and often 

irregular temporal granularities. Further on, role layer of POPDO is method oriented so 

it keeps clean distinction of roles within the disaggregation process. Potentially, this might 

be limiting if e.g. target zone is to be used as a source zone of another disaggregation 

method. Process layer of POPDO considers only procedures of disaggregation method 

while it neglects modelling uncertainty and error propagation. This might be important if 

certainty of disaggregation is relevant for further population data usage. Finally, POPDO 

ontology does not consider semantical description of the algorithm, and it is left to 

implementation technology to perform calculations based on specific disaggregation 

method logic. Additional limitation of the current Semantic Web, and POPDO is the lack 

of ontologies describing raster data. As modern disaggregation methods highly rely on 

remote sensing imagery and other raster data, this may pose a significant limitation on 

usability of POPDO ontology. Currently, pixels of raster structure can be considered 

vectors, i.e. polygons in the ontology, but this requires additional efforts in data 
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preprocessing. However, POPDO is abstract enough so it considers raster data and can 

be easily extended once raster geospatial data ontologies are developed. 

Based on the proposed ontology model for population disaggregation process and the 

results obtained, the evaluation of the research hypotheses can be articulated as follows: 

1. Methods of spatial disaggregation for population data can be conceptually 

modelled as procedures in an ontological model, where procedures, 

spatial relations, and key components, such as input data, parameters, 

and outputs — are defined. 

Drawing on the conclusions derived from specific objectives one, two, and three, this 

hypothesis is confirmed. Population data disaggregation methods can indeed be 

conceptually represented as procedural constructs, and the overall process can be 

semantically described as a coherent workflow. 

2. Modelling spatial disaggregation methods as ontological procedures, it is 

possible to automate the disaggregation of population data. 

On the basis of findings associated with specific objectives three and four, this hypothesis 

is confirmed. When spatial disaggregation methods are modelled as ontological workflow 

procedures, they can support the automated execution of disaggregation tasks and 

facilitate the generation of disaggregated population data. 
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The research in this thesis presented the development of an ontology-based model for the 

spatiotemporal disaggregation of population data. To address the limitations of existing 

approaches and facilitate the production of more accurate spatial representations of 

population distribution, the Population Disaggregation Ontology (POPDO) is proposed as 

a formal model for representing the disaggregation process through semantic descriptions 

of sequential procedures, relevant datasets, and their respective roles. The research 

demonstrated that integrating domain-specific knowledge with computational logic 

through ontology engineering can enhance both conceptual clarity and automation 

capabilities in the field of population disaggregation. 

The development of the Population Disaggregation Ontology (POPDO) aimed to establish 

a flexible ontological framework capable of supporting automated spatiotemporal 

disaggregation of population data. This process was guided by four specific objectives 

designed to ensure that the ontology remained both generic and sufficiently expressive 

for its intended applications. The first objective, “Define key concepts and spatial relations 

in spatial disaggregation methods,” ensured that POPDO encapsulated all domain-

relevant concepts in a highly abstract form, enabling its applicability regardless of the 

specific disaggregation method employed. The second objective, “Ensure interoperability 

of the proposed ontological model,” focused on facilitating the broad usability and adoption 

of POPDO through the integration of established and widely accepted standards and 

vocabularies, including GeoSPARQL, OWL-Time, the RDF Data Cube Vocabulary, and 

the Function Ontology. The third objective, “Develop an ontology model for modelling 

spatial disaggregation procedures,” guided the semantic linking of disaggregation-relevant 

concepts into a coherent ontological structure. The three-layer architecture of POPDO, 

comprising POPDOd, POPDOr, and POPDOp, enabled the harmonization of differing 

semantic interpretations into a unified and operational ontology. Finally, the fourth 

objective, “Test the developed disaggregation model,” facilitated an evaluation of the 

ontology’s practical applicability in a real-world context. Empirical testing conducted 

using data from the administrative unit of Trogir confirmed both the conceptual 

soundness and operational feasibility of the POPDO-based disaggregation approach. The 

results further highlighted the ontology-driven methodology’s advantages in terms of 
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transparency, reusability, interoperability, and automation potential, demonstrating its 

viability as a robust alternative to traditional disaggregation techniques. 

The identified limitations of the Population Disaggregation Ontology (POPDO) provide 

valuable guidance for future research and development efforts, particularly in enhancing 

disaggregation accuracy and advancing raster data ontologies, which are recognized as 

priority research domains. Addressing these aspects will ultimately ensure that POPDO 

fully supports advanced population disaggregation methodologies while incorporating 

mechanisms for assessing and maintaining result accuracy. Despite its current limitations, 

the proposed POPDO model, validated through empirical testing, offers notable 

contributions to both theoretical understanding and practical implementation. From a 

theoretical standpoint, POPDO represents the first semantic web–based approach to 

conceptualizing population disaggregation as a process. Its conceptual structure and 

integration with existing Semantic Web ontologies expand the knowledge base and 

promote further development of computer-automated disaggregation systems. Practically, 

POPDO establishes a foundation for developing automated web services capable of 

delivering disaggregated population data to a broad spectrum of users, thereby enhancing 

data accessibility and supporting the advancement of applications that depend on accurate 

population information. 

Within the broader paradigm of contemporary data sharing and utilization, the Semantic 

Web and its associated applications are assuming increasingly significant roles. National 

mapping agencies worldwide, such as Ordnance Survey and the United States Geological 

Survey (USGS), recognize semantic technologies as a transformative advancement that 

facilitates the dissemination and utilization of geospatial data. These organizations 

anticipate a growing demand for geospatial datasets that are compatible with Semantic 

Web services and are actively working to address this emerging need. This trend has 

direct implications for the adoption of semantically enabled applications required to fully 

leverage the potential of such data. In this context, application ontologies such as the 

Population Disaggregation Ontology (POPDO) will play a crucial role.  
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APPENDIX B: DATA DESCRIPTION 

Dataset Data Source Metadata Attributes License 

Population by 
Towns/Municipalities 

National Bureau of Statistics (NBS) – 2021 
Census 

2021 1 
Tabular data 2 

NBS data portal 3 

*.xslx 4 

Spatial unit name 
Total population 

Open Government License 

Natural change in 
population, 2022 

National Bureau of Statistics (NBS) 2022 1 

Tabular data 2 

NBS website 3 

*.xslx 4 

Spatial unit name 
Population change 

Open Government License 

Local self-government 
units 

State Geodetic Administration Geoportal 2025 1 

Vectors (polygon) 2 

ATOM service 3 

*.gml 4 

ETRS89/LAEA 5 

ID 
Text (name) 
WKT geometry 

Open Government License 

Building Footprints State Geodetic Administration Geoportal 2025 1 

Vectors (polygon) 2 

ATOM service 3 

*.gml 4 

HTRS96/TM 5 

ID 
Use code 
WKT geometry 

Open Government License 

Area of Interest 
(arbitrary target zone) 

User created (QGIS) Vector (polygon) 2 

HTRS96/TM 5 

WKT geometry / 

1 reference year,    2 data type,    3 access type,    4 data format,    5 coordinate reference system 



Appendices 

167 

APPENDIX C: SCHEMA INDIVIDUALS 

FUNCTION INDIVIDUALS 

@base <http://www.example.com/function/> . 

@prefix fun: <http://www.example.com/function/> . 

@prefix popd: <http://www.example.com/ontology/popdcore#> . 

@prefix bdasy: <http://www.example.com/ontology/buildingareadasy#> . 

@prefix admunit: <http://www.example.com/data/admunit/> . 

@prefix build: <http://www.example.com/data/building/> . 

@prefix popcnt: <http://www.example.com/data/popcount/> . 

@prefix popcng: <http://www.example.com/data/popchange/> . 

@prefix areai: <http://www.example.com/data/areainterest/> . 

@prefix fno: <https://w3id.org/function/ontology#> . 

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 

@prefix dcterms: <http://purl.org/dc/terms/> . 

 

#DISAGGREGATION METHOD 

fun:DisaggregationMethod a popd:DisaggregationMethod ; 

 fno:name "Top-level disaggregation function acting as a procedure"^^xsd:string ; 

 dcterms:description "Main disaggregation workflow."^^xsd:string ; 

 fno:expects (fun:SourceZoneQuery fun:ResidentialBuildingQuery 

fun:ArbitraryUnitQuery) ; 

 fno:returns (fun:FinalArbitraryUnit) . 

 

fun:SourceZoneQuery a fno:Parameter ; 

 rdfs:comment "Input SPARQL query for source zone filtering"@en ; 

 fno:predicate fun:hasSourceZoneQuery ; 

 fno:type xsd:string ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ResidentialBuildingQuery a fno:Parameter ; 

 rdfs:comment "Input SPARQL query for residential buildings filtering"@en ; 

 fno:predicate fun:hasResidentialBuildingQuery ; 

 fno:type xsd:string; 

 fno:required "true"^^xsd:boolean . 

 

fun:ArbitraryUnitQuery a fno:Parameter ; 

 rdfs:comment "Input SPARQL query for arbitrary spatial unit filtering"@en ; 

 fno:predicate fun:hasArbitraryUnitQuery ; 

 fno:type xsd:string; 

 fno:required "true"^^xsd:boolean . 
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fun:FinalArbitraryUnit a fno:Output ; 

 rdfs:comment "Population disaggregation result"@en ; 

 fno:predicate fun:hasDisaggregatedPopulation ; 

 fno:type popd:TargetZone; 

 fno:required "true"^^xsd:boolean . 

 

#DISAGGREGATION STEP (TEMPORAL ADJUSTMENT) 

fun:TemporalAdjustment a popd:DisaggregationStep ; 

 fno:name "Temporal population adjustment"^^xsd:string ; 

 dcterms:description "Middle level function performing temporal adjustment."^^xsd:string 

; 

 fno:expects (fun:SourceZoneQuery2) ; 

 fno:returns (fun:ResultingSourceZone1) . 

 

fun:SourceZoneQuery2 a fno:Parameter ; 

 rdfs:comment "Filter for reaching Source Zone URI"@en ; 

 fno:type xsd:string ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ResultingSourceZone1 a fno:Output ; 

 rdfs:comment "Adjusted population value tied to spatial"@en ; 

 fno:type popd:SourceZone . 

 

##ALGORITHM STEP (TEMPORAL ADJUSTMENT) 

fun:SimplePopulationAdjustment a popd:AlgorithmStep ; 

 fno:name "Temporal population adjustment"^^xsd:string ; 

 dcterms:description "Bottom level function adjusting population data."^^xsd:string ; 

 fno:expects (fun:SourceZoneQuery3) ; 

 fno:returns (fun:OutputSourceZone1) . 

 

fun:SourceZoneQuery3 a fno:Parameter ; 

 rdfs:comment "Filter for reaching Source Zone URI"@en ; 

 fno:type xsd:string ; 

 fno:required "true"^^xsd:boolean . 

 

fun:OutputSourceZone1 a fno:Output ; 

 rdfs:comment "Returning Source Zone URI"@en ; 

 fno:type popd:SourceZone . 

 

#DISAGGREGATION STEP (WEIGHT COMPUTATION) 

fun:WeightComputation a popd:DisaggregationStep ; 

 fno:name "Calculation of weights"^^xsd:string ; 
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 dcterms:description "Middle level function performing weight computation."^^xsd:string 

; 

 fno:expects (fun:SourceZoneInput1 fun:ResidentialBuildingQuery2) ; 

 fno:returns (fun:ResultingResidentialBuilding1) . 

 

fun:SourceZoneInput1 a fno:Parameter ; 

 rdfs:comment "Source Zone as admisnistrative unit"@en ; 

 fno:type popd:SourceZone ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ResidentialBuildingQuery2 a fno:Parameter ; 

 rdfs:comment "Filter for reaching Residential Buildings URIs"@en ; 

 fno:type xsd:string ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ResultingResidentialBuilding1 a fno:Output ; 

 rdfs:comment "Residential buildings with weights"@en ; 

 fno:type rdfs:List . 

 

#--- 

#ALGORITHM STEP (AREA RATIO, ESTIMATED DENSITY, DENSITY RATIO, TOTAL 

FRACTION) 

fun:AreaRatio a popd:AlgorithmStep ; 

 fno:name "Building Area Ratio Function"^^xsd:string ; 

 dcterms:description "Takes a query returning building features with WKT geometries. 

Calculates the area for each and its ratio to the total, then attaches these values to each 

building."^^xsd:string ; 

 fno:expects (fun:ResidentialBuildingQuery3) ; 

 fno:returns (fun:OutputResidentialBuilding1) . 

 

fun:ResidentialBuildingQuery3 a fno:Parameter ; 

 rdfs:comment "Filter for reaching Residential Buildings URIs"@en ; 

 fno:type xsd:string ; 

 fno:required "true"^^xsd:boolean . 

 

fun:OutputResidentialBuilding1 a fno:Output ; 

 rdfs:comment "Returning Residential Buildings URIs"@en ; 

 fno:type rdfs:List . 

#---- 

fun:EstimatedPopulationDensity a popd:AlgorithmStep ; 

 fno:name "Estimated Population Density Function"^^xsd:string ; 

 dcterms:description "Function that calculates estimated population density for a specific 

residential building class"^^xsd:string ; 
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 fno:expects (fun:SourceZoneInput2 fun:ResidentialBuildingInput1) ; 

 fno:returns (fun:OutputResidentialBuilding2) . 

 

fun:SourceZoneInput2 a fno:Parameter ; 

 rdfs:comment "SourceZone URI"@en ; 

 fno:type popd:SourceZone ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ResidentialBuildingInput1 a fno:Parameter ; 

 rdfs:comment "Residential building URI"@en ; 

 fno:type rdfs:List ; 

 fno:required "true"^^xsd:boolean . 

 

fun:OutputResidentialBuilding2 a fno:Output ; 

 rdfs:comment "Returning Residential Buildings URIs"@en ; 

 fno:type rdfs:List . 

#---- 

fun:DensityRatio a popd:AlgorithmStep ; 

 fno:name "Population density function"^^xsd:string ; 

 dcterms:description "Function that normalizes estimated population densities for every 

class by dividing it with the sum of all estimated densities"^^xsd:string ; 

 fno:expects (fun:ResidentialBuildingInput2) ; 

 fno:returns (fun:OutputResidentialBuilding3) . 

 

fun:ResidentialBuildingInput2 a fno:Parameter ; 

 rdfs:comment "Residential building URI"@en ; 

 fno:type rdfs:List ; 

 fno:required "true"^^xsd:boolean . 

 

fun:OutputResidentialBuilding3 a fno:Output ; 

 rdfs:comment "Returning Residential Buildings URIs"@en ; 

 fno:type rdfs:List . 

#---- 

fun:TotalFraction a popd:AlgorithmStep ; 

 fno:name "Total fraction function"^^xsd:string ; 

 dcterms:description "Function that calculates ratio of areaXdensity product and sum of 

all areaXdensity products"^^xsd:string ; 

 fno:expects (fun:ResidentialBuildingInput3) ; 

 fno:returns (fun:OutputResidentialBuilding4) . 

 

fun:ResidentialBuildingInput3 a fno:Parameter ; 

 rdfs:comment "Residential building URI"@en ; 

 fno:type rdfs:List ; 
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 fno:required "true"^^xsd:boolean . 

 

fun:OutputResidentialBuilding4 a fno:Output ; 

 rdfs:comment "Returning Residential Buildings URIs"@en ; 

 fno:type rdfs:List . 

 

#DISAGGREGATION STEP (DISAGGREGATION) 

 

fun:Disaggregation a popd:DisaggregationStep ; 

 fno:name "Disaggregation function"^^xsd:string ; 

 dcterms:description "Middle level function performing disaggregation."^^xsd:string ; 

 fno:expects (fun:SourceZoneInput3 fun:ResidentialBuildingInput4) ; 

 fno:returns (fun:ResultingResidentialBuilding2) . 

 

fun:SourceZoneInput3 a fno:Parameter ; 

 fno:type popd:SourceZone ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ResidentialBuildingInput4 a fno:Parameter ; 

 fno:type rdfs:List ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ResultingResidentialBuilding2 a fno:Output ; 

 rdfs:comment "Residential buildings with weights"@en ; 

 fno:type rdfs:List . 

 

#ALGORITHM STEP (SIMPLE DISAGGREGATION) 

fun:SimpleDisaggregation a popd:AlgorithmStep ; 

 fno:name "Simple disaggregation function"^^xsd:string ; 

 dcterms:description "Function that calculated population at building level"^^xsd:string ; 

 fno:expects (fun:SourceZoneInput4 fun:ResidentialBuildingInput5) ; 

 fno:returns (fun:OutputResidentialBuilding5) . 

 

fun:SourceZoneInput4 a fno:Parameter ; 

 fno:type popd:SourceZone ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ResidentialBuildingInput5 a fno:Parameter ; 

 fno:type rdfs:List ; 

 fno:required "true"^^xsd:boolean . 

 

fun:OutputResidentialBuilding5 a fno:Output ; 

 fno:type rdfs:List ; 
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 fno:required "true"^^xsd:boolean . 

 

#DISAGGREGATION STEP (AGGREGATION) 

fun:Aggregation a popd:DisaggregationStep ; 

 fno:name "Aggregation function"^^xsd:string ; 

 dcterms:description "Middle level function performing aggregation."^^xsd:string ; 

 fno:expects (fun:ResidentialBuildingInput6 fun:ArbitraryUnitQuery2) ; 

 fno:returns (fun:ResultingArbitraryUnit1) . 

 

fun:ResidentialBuildingInput6 a fno:Parameter ; 

 fno:type rdfs:List ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ArbitraryUnitQuery2 a fno:Parameter ; 

 fno:type xsd:string ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ResultingArbitraryUnit1 a fno:Output ; 

 fno:type popd:TargetZone ; 

 fno:required "true"^^xsd:boolean . 

 

##ALGORITHM STEP (SIMPLE AGGREGATION) 

fun:SimpleAggregation a popd:AlgorithmStep ; 

 fno:name "Simple aggregation function"^^xsd:string ; 

 dcterms:description "Function that calculated population at arbitrary spatial 

unit"^^xsd:string ; 

 fno:expects (fun:ResidentialBuildingInput7 fun:ArbitraryUnitQuery3) ; 

 fno:returns (fun:ResultingArbitraryUnit2) . 

 

fun:ResidentialBuildingInput7 a fno:Parameter ; 

 fno:type rdfs:List ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ArbitraryUnitQuery3 a fno:Parameter ; 

 fno:type xsd:string ; 

 fno:required "true"^^xsd:boolean . 

 

fun:ResultingArbitraryUnit2 a fno:Output ; 

 fno:type popd:TargetZone ; 

 fno:required "true"^^xsd:boolean . 
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EXECUTION INDIVIDUAL 

exe:DisaggregationMethodExecution a fno:Execution ; 

 fno:executes fun:DisaggregationMethod ; 

 fno:uses map:DisaggregationMethodMapping ; 

 fun:hasSourceZoneQuery  

"PREFIX popd: <http://www.example.com/ontology/popdcore#>  

SELECT ?sourceZone  

WHERE {?sourceZone a popd:SourceZone .}"^^xsd:string ; 

 fun:hasResidentialBuildingQuery  

"PREFIX bdasy: <http://www.example.com/ontology/buildingareadasy#> 

SELECT ?building  

WHERE {?building a bdasy:BuildingFootprint ; bdasy:hasUseCode ?useCode .  

FILTER(?useCode IN (100, 101, 102, 103))}"^^xsd:string  ; 

 fun:hasArbitraryUnitQuery  

"PREFIX popd: <http://www.example.com/ontology/popdcore#>  

SELECT ?arbitraryUnit  

WHERE {?arbitraryUnit a popd:TargetZone. }"^^xsd:string ; 

 fun:hasDisaggregatedPopulation areai:AreaOfInterest . 

 

MAPPING INDIVIDUALS 

 

#DisaggregationMethod MAPPING 

map:DisaggregationMethodMapping a fno:Mapping ; 

 fno:function fun:DisaggregationMethod ; 

 fno:implementation imp:DisaggregationMethodImplementation . 

 

#TemporalAdjustment MAPPING 

map:TemporalAdjustmentMapping a fno:Mapping ; 

 fno:function fun:TemporalAdjustment ; 

 fno:implementation imp:TemporalAdjustmentImplementation . 

 

#WeightComputation MAPPING 

map:WeightComputationMapping a fno:Mapping ; 

 fno:function fun:WeightComputation ; 

 fno:implementation imp:WeightComputationImplementation . 

 

#Disaggregation MAPPING 

map:DisaggregationMapping a fno:Mapping ; 

 fno:function fun:Disaggregation ; 

 fno:implementation imp:DisaggregationImplementation . 

 

 



Appendices  

174 

#Aggregation MAPPING 

map:AggregationMapping a fno:Mapping ; 

 fno:function fun:Aggregation ; 

 fno:implementation imp:AggregationImplementation . 

 

#TEMPORAL ADJUSTMENT 

map:SimplePopulationAdjustmentMapping a fno:Mapping ; 

 fno:function fun:SimplePopulationAdjustment ; 

 fno:implementation imp:SimplePopulationAdjustmentImplementation ; 

 fno:methodMapping [ a fnom:StringMethodMapping ; 

    fnom:method-name "doTemporalAdjustment"^^xsd:string] ; 

 fno:parameterMapping [ a fnom:PositionParameterMapping ; 

    fnom:functionParameter fun:SourceZoneQuery3 ; 

    fnom:implementationParameterPosition "1"^^xsd:int ] ; 

 fno:returnMapping [ a fnom:DefaultReturnMapping ; 

    fnom:functionOutput fun:OutputSourceZone1 ] . 

 

#AreaRatio 

map:AreaRatioMapping a fno:Mapping ; 

 fno:function fun:AreaRatio ; 

 fno:implementation imp:AreaRatioImplementation ; 

 fno:methodMapping [ a fnom:StringMethodMapping ; 

    fnom:method-name "doAreaRatio"^^xsd:string] ; 

 fno:parameterMapping [ a fnom:PositionParameterMapping ; 

    fnom:functionParameter fun:ResidentialBuildingQuery3 ; 

    fnom:implementationParameterPosition "1"^^xsd:int ] ; 

 fno:returnMapping [ a fnom:DefaultReturnMapping ; 

    fnom:functionOutput fun:OutputResidentialBuilding1 ] . 

 

#EstimatedDenstiy 

map:EstimatedDensityMapping a fno:Mapping ; 

 fno:function fun:EstimatedPopulationDensity ; 

 fno:implementation imp:EstimatedPopulationDensityImplementation ; 

 fno:methodMapping [ a fnom:StringMethodMapping ; 

    fnom:method-name "doDensityEstimation"^^xsd:string] ; 

 fno:parameterMapping [ a fnom:PositionParameterMapping ; 

    fnom:functionParameter fun:SourceZoneInput2 ; 

    fnom:implementationParameterPosition "1"^^xsd:int ] ; 

 fno:parameterMapping [ a fnom:PositionParameterMapping ; 

    fnom:functionParameter fun:ResidentialBuildingInput1 ; 

    fnom:implementationParameterPosition "2"^^xsd:int ] ; 

 fno:returnMapping [ a fnom:DefaultReturnMapping ; 

    fnom:functionOutput fun:OutputResidentialBuilding2 ] . 
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#DensityRatio 

map:DensityRatioMapping a fno:Mapping ; 

 fno:function fun:DensityRatio ; 

 fno:implementation imp:DensityRatioImplementation ; 

 fno:methodMapping [ a fnom:StringMethodMapping ; 

    fnom:method-name "doDensityRatio"^^xsd:string] ; 

 fno:parameterMapping [ a fnom:PositionParameterMapping ; 

    fnom:functionParameter fun:ResidentialBuildingInput2 ; 

    fnom:implementationParameterPosition "1"^^xsd:int ] ; 

 fno:returnMapping [ a fnom:DefaultReturnMapping ; 

    fnom:functionOutput fun:OutputResidentialBuilding3 ] . 

 

#TotalFraction 

map:TotalFractionMapping a fno:Mapping ; 

 fno:function fun:TotalFraction ; 

 fno:implementation imp:TotalFractionImplementation ; 

 fno:methodMapping [ a fnom:StringMethodMapping ; 

    fnom:method-name "doTotalFraction"^^xsd:string] ; 

 fno:parameterMapping [ a fnom:PositionParameterMapping ; 

    fnom:functionParameter fun:ResidentialBuildingInput3 ; 

    fnom:implementationParameterPosition "1"^^xsd:int ] ; 

 fno:returnMapping [ a fnom:DefaultReturnMapping ; 

    fnom:functionOutput fun:OutputResidentialBuilding4 ] . 

 

#Disaggregation 

map:SimpleDisaggregationMapping a fno:Mapping ; 

 fno:function fun:SimpleDisaggregation ; 

 fno:implementation imp:SimpleDisaggregationImplementation ; 

 fno:methodMapping [ a fnom:StringMethodMapping ; 

    fnom:method-name "doDisaggregation"^^xsd:string] ; 

 fno:parameterMapping [ a fnom:PositionParameterMapping ; 

    fnom:functionParameter fun:SourceZoneInput4 ; 

    fnom:implementationParameterPosition "1"^^xsd:int ] ; 

 fno:parameterMapping [ a fnom:PositionParameterMapping ; 

    fnom:functionParameter fun:ResidentialBuildingInput5 ; 

    fnom:implementationParameterPosition "2"^^xsd:int ] ; 

 fno:returnMapping [ a fnom:DefaultReturnMapping ; 

    fnom:functionOutput fun:OutputResidentialBuilding5 ] . 

 

#Aggregation 

map:SimpleAggregationMapping a fno:Mapping ; 

 fno:function fun:SimpleAggregation ; 

 fno:implementation imp:SimpleAggregationImplementation ; 
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 fno:methodMapping [ a fnom:StringMethodMapping ; 

    fnom:method-name "doArbitraryAggregation"^^xsd:string] ; 

 fno:parameterMapping [ a fnom:PositionParameterMapping ; 

    fnom:functionParameter fun:ResidentialBuildingInput7 ; 

    fnom:implementationParameterPosition "1"^^xsd:int ] ; 

 fno:parameterMapping [ a fnom:PositionParameterMapping ; 

    fnom:functionParameter fun:ArbitraryUnitQuery3 ; 

    fnom:implementationParameterPosition "2"^^xsd:int ] ; 

 fno:returnMapping [ a fnom:DefaultReturnMapping ; 

    fnom:functionOutput fun:ResultingArbitraryUnit2 ] . 

 

IMPLEMENTATION INDIVIDUALS 

 

#DISAGGREGATION METHOD 

imp:DisaggregationMethodImplementation a fno:Implementation ; 

 rdfs:label "Links to composition individual"@en ; 

 imp:implements comp:DisaggregationMethodComposition ; 

 rdf:comment "implementation using composition rules" . 

 

imp:implements rdf:type owl:ObjectProperty ; 

 rdfs:domain fnoi:Implementation ; 

 rdfs:range fnoc:Composition . 

 

#TEMPORAL ADJUSTMENT 

imp:TemporalAdjustmentImplementation a fno:Implementation ; 

 rdfs:label "Links to composition individual"@en ; 

 imp:implements comp:TemporalAdjustmentComposition ; 

 rdf:comment "implementation using composition rules" . 

 

#WEIGHT COMPUTATION 

imp:WeightComputationImplementation a fno:Implementation ; 

 rdfs:label "Links to composition individual"@en ; 

 imp:implements comp:WeightComputationComposition ; 

 rdf:comment "implementation using composition rules" . 

 

#DISAGGREGATION 

imp:DisaggregationImplementation a fno:Implementation ; 

 rdfs:label "Links to composition individual"@en ; 

 imp:implements comp:DisaggregationComposition ; 

 rdf:comment "implementation using composition rules" . 

 

#AGGREGATION 

imp:AggregationImplementation a fno:Implementation ; 
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 rdfs:label "Links to composition individual"@en ; 

 imp:implements comp:AggregationComposition ; 

 rdf:comment "implementation using composition rules" . 

 

#Simple Population Adjustment 

imp:SimplePopulationAdjustmentImplementation a fno:Implementation ; 

 rdfs:label "Python script"@en ; 

 imp:location <file:///C:/Scripts/DoTemporalAdjustment.py>; 

 rdf:comment "python script for area ratio calculation" . 

 

imp:location rdf:type owl:DatatypeProperty ; 

 rdfs:domain fnoi:Implementation . 

 

#AreaRatio 

imp:AreaRatioImplementation a fno:Implementation ; 

 rdfs:label "Python script"@en ; 

 imp:location <file:///C:/Scripts/DoAreaRatio.py>; 

 rdf:comment "python script for area ratio calculation" . 

 

#EstimatedDensity 

imp:EstimatedPopulationDensityImplementation a fno:Implementation ; 

 rdfs:label "Python script"@en ; 

 imp:location <file:///C:/Scripts/DoDensityEstimation.py>; 

 rdf:comment "python script for calculation of estimated population density" . 

 

#DensityRatio 

imp:DensityRatioImplementation a fno:Implementation ; 

 rdfs:label "Python script"@en ; 

 imp:location <file:///C:/Scripts/DoDensityRatio.py>; 

 rdf:comment "python script for density ratio calculation" . 

 

#TotalFraction 

imp:TotalFractionImplementation a fno:Implementation ; 

 rdfs:label "Python script"@en ; 

 imp:location <file:///C:/Scripts/DoTotalFraction.py>; 

 rdf:comment "python script for total fraction calculation" . 

 

#Disaggregation 

imp:SimpleDisaggregationImplementation a fno:Implementation ; 

 rdfs:label "Python script"@en ; 

 imp:location <file:///C:/Scripts/doDisaggregation.py>; 

 rdf:comment "python script for disaggregated population calculation" . 
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#Aggregacija 

imp:SimpleAggregationImplementation a fno:Implementation ; 

 rdfs:label "Python script"@en ; 

 imp:location <file:///C:/Scripts/doArbitraryAggregation.py>; 

 rdf:comment "python script for calculating population within arbitrary unit" . 

 

COMPOSITION INDIVIDUALS 

 

#Disaggregation Method Composition 

comp:DisaggregationMethodComposition a fnoc:Composition ; 

 fnoc:composedOf  

 [  

  # 1. Map Initial Source Query -> TemporalAdjustment 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:DisaggregationMethod ; 

   fnoc:functionParameter fun:SourceZoneQuery 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:TemporalAdjustment ; 

   fnoc:functionParameter fun:SourceZoneQuery2 

  ] 

 ] , 

 [  

  # 2. Map Initial Building Query -> WeightComputation 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:DisaggregationMethod ; 

   fnoc:functionParameter fun:ResidentialBuildingQuery 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:WeightComputation ; 

   fnoc:functionParameter fun:ResidentialBuildingQuery2 

  ] 

 ] , 

 [  

  # 3. Map Initial Arbitrary Unit Query -> Aggregation 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:DisaggregationMethod ; 

   fnoc:functionParameter fun:ArbitraryUnitQuery 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:Aggregation ; 

   fnoc:functionParameter fun:ArbitraryUnitQuery2 

  ] 
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 ] , 

 [  

  # 4. Connect TemporalAdjustment Output -> WeightComputation Input 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:TemporalAdjustment ; 

   fnoc:functionOutput fun:ResultingSourceZone1 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:WeightComputation ; 

   fnoc:functionParameter fun:SourceZoneInput1 

  ] 

 ] , 

 [  

  # 5. Connect TemporalAdjustment Output -> Disaggregation Input 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:TemporalAdjustment ; 

   fnoc:functionOutput fun:ResultingSourceZone1 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:Disaggregation ; 

   fnoc:functionParameter fun:SourceZoneInput3 

  ] 

 ] , 

 [  

  # 6. Connect WeightComputation Output -> Disaggregation Input 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:WeightComputation ; 

   fnoc:functionOutput fun:ResultingResidentialBuilding1 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:Disaggregation ; 

   fnoc:functionParameter fun:ResidentialBuildingInput4 

  ] 

 ] , 

 [  

  # 7. Connect Disaggregation Output -> Aggregation Input 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:Disaggregation ; 

   fnoc:functionOutput fun:ResultingResidentialBuilding2 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:Aggregation ; 

   fnoc:functionParameter fun:ResidentialBuildingInput6 
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  ] 

 ] , 

 [  

  # 8. Connect Aggregation Output -> Final Workflow Output 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:Aggregation ; 

   fnoc:functionOutput fun:ResultingArbitraryUnit1 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:DisaggregationMethod ; 

   fnoc:functionOutput fun:FinalArbitraryUnit 

  ] 

 ]. 

 

#Temporal Adjustment Composition 

comp:TemporalAdjustmentComposition a fnoc:Composition ; 

 fnoc:composedOf [ 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:TemporalAdjustment ; 

   fnoc:functionParameter fun:SourceZoneQuery2 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:SimplePopulationAdjustment ; 

   fnoc:functionParameter fun:SourceZoneQuery3 

  ] 

 ] , 

 [  

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:SimplePopulationAdjustment ; 

   fnoc:functionOutput fun:OutputSourceZone1 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:TemporalAdjustment ; 

   fnoc:functionOutput fun:ResultingSourceZone1 

  ] 

 ] . 

 

#WeightComputation Composition 

comp:WeightComputationComposition a fnoc:Composition ; 

 fnoc:composedOf [ 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:WeightComputation ; 

   fnoc:functionParameter fun:SourceZoneInput1 
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  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:EstimatedPopulationDensity ; 

   fnoc:functionParameter fun:SourceZoneInput2 

  ] 

 ] , 

 [  

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:WeightComputation ; 

   fnoc:functionParameter fun:ResidentialBuildingQuery2 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:AreaRatio ; 

   fnoc:functionParameter fun:ResidentialBuildingQuery3 

  ] 

 ] , 

 [  

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:AreaRatio ; 

   fnoc:functionOutput fun:OutputResidentialBuilding1 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:EstimatedPopulationDensity ; 

   fnoc:functionParameter fun:ResidentialBuildingInput1 

  ] 

 ] , 

 [  

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:EstimatedPopulationDensity ; 

   fnoc:functionOutput fun:OutputResidentialBuilding2 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:DensityRatio ; 

   fnoc:functionParameter fun:ResidentialBuildingInput2 

  ] 

 ], 

 [  

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:DensityRatio ; 

   fnoc:functionOutput fun:OutputResidentialBuilding3 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:TotalFraction ; 
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   fnoc:functionParameter fun:ResidentialBuildingInput3 

  ] 

 ], 

 [  

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:TotalFraction ; 

   fnoc:functionOutput fun:OutputResidentialBuilding4 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:WeightComputation ; 

   fnoc:functionOutput fun:ResultingResidentialBuilding1 

  ] 

 ]. 

 

#Disaggregation Composition 

comp:DisaggregationComposition a fnoc:Composition ; 

 fnoc:composedOf [ 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:Disaggregation ; 

   fnoc:functionParameter fun:SourceZoneInput3 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:SimpleDisaggregation ; 

   fnoc:functionParameter fun:SourceZoneInput4 

  ] 

 ] , 

 [  

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:Disaggregation ; 

   fnoc:functionParameter fun:ResidentialBuildingInput4 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:SimpleDisaggregation ; 

   fnoc:functionParameter fun:ResidentialBuildingInput5 

  ] 

 ] , 

 [  

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:SimpleDisaggregation ; 

   fnoc:functionOutput fun:OutputResidentialBuilding5 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:Disaggregation ; 
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   fnoc:functionOutput fun:ResultingResidentialBuilding2 

  ] 

 ] . 

 

#Aggregation Composition 

comp:AggregationComposition a fnoc:Composition ; 

 fnoc:composedOf [ 

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:Aggregation ; 

   fnoc:functionParameter fun:ResidentialBuildingInput6 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:SimpleAggregation ; 

   fnoc:functionParameter fun:ResidentialBuildingInput7 

  ] 

 ] , 

 [  

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:Aggregation ; 

   fnoc:functionParameter fun:ArbitraryUnitQuery2 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:SimpleAggregation ; 

   fnoc:functionParameter fun:ArbitraryUnitQuery3 

  ] 

 ] , 

 [  

  fnoc:mapFrom [ 

   fnoc:constituentFunction fun:SimpleAggregation ; 

   fnoc:functionOutput fun:ResultingArbitraryUnit2 

  ] ; 

  fnoc:mapTo [ 

   fnoc:constituentFunction fun:Aggregation ; 

   fnoc:functionOutput fun:ResultingArbitraryUnit1 

  ] 

 ] . 
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APPENDIX D: PYTHON SCRIPTS 

ORCHESTRATION SCRIPT 

 

import sys 

import importlib.util 

from pathlib import Path 

from urllib.parse import urlparse, unquote 

from SPARQLWrapper import SPARQLWrapper, JSON 

from collections import deque 

 

# ================================================================== 

# CONFIGURATION 

# ================================================================== 

SPARQL_QUERY_ENDPOINT = "http://localhost:7200/repositories/DisaggregationProba9" 

TOP_LEVEL_EXECUTION_URI = 

"http://www.example.com/execution/DisaggregationMethodExecution" 

 

# ================================================================== 

# DYNAMIC ORCHESTRATOR 

# ================================================================== 

 

class SimpleOrchestrator: 

    """ 

    A recursive orchestrator that executes a workflow described by BDASY. 

    """ 

 

    def __init__(self, endpoint): 

        self.sparql = SPARQLWrapper(endpoint) 

        self.sparql.setReturnFormat(JSON) 

        self.execution_cache = {} 

        self.parameter_order_cache = {}  # Cache for ordered parameters 

        print(f"Orchestrator initialized for endpoint: {endpoint}") 

 

    def _run_query(self, query): 

        """Helper function to execute a SPARQL query and return bindings.""" 

        self.sparql.setQuery(query) 

        try: 

            return self.sparql.query().convert()["results"]["bindings"] 

        except Exception as e: 

            print(f"FATAL SPARQL Query Failed: {e}\nQuery was:\n{query}") 

            raise 
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    def execute_function(self, function_uri, arguments): 

        """Main recursive execution engine for any function.""" 

        if function_uri in self.execution_cache and not arguments: 

            print(f"  -> Returning cached result for <{Path(function_uri).name}>") 

            return self.execution_cache[function_uri] 

 

        print(f"\nExecuting function: <{Path(function_uri).name}>") 

        impl_details = self._get_implementation_details(function_uri) 

 

        result = None 

        if impl_details ['type'] == 'script': 

            result = self._execute_script(impl_details, arguments) 

        elif impl_details['type'] == 'composition': 

            result = self._execute_composition(impl_details['uri'], arguments) 

 

        # Only cache results of functions that don't take arguments, to be safe 

        if not arguments: 

            self.execution_cache[function_uri] = result 

        print(f"  -> Finished executing <{Path(function_uri).name}>") 

        return result 

 

    def _get_implementation_details(self, function_uri): 

        """Finds if a function is implemented by a script or a composition.""" 

        query = f""" 

        PREFIX fno: <https://w3id.org/function/ontology#> 

        PREFIX imp: <http://www.example.com/implementation/> 

        PREFIX fnom: <https://w3id.org/function/vocabulary/mapping#> 

        SELECT ?impl_type ?composition_uri ?script_path ?method_name WHERE {{ 

            ?mapping fno:function <{function_uri}> ; fno:implementation ?impl . 

            OPTIONAL {{ ?impl imp:implements ?composition_uri . BIND("composition" AS 

?impl_type) }} 

            OPTIONAL {{  

                ?impl imp:location ?script_path .  

                ?mapping fno:methodMapping [ fnom:method-name ?method_name ] .  

                BIND("script" AS ?impl_type)  

            }} 

        }} LIMIT 1 

        """ 

        results = self._run_query(query) 

        if not results: raise LookupError(f"No implementation/mapping found for <{function_uri}>") 

        details = results[0] 

        impl_type = details.get('impl_type', {}).get('value') 

        if impl_type == 'composition': 
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            return {"type": "composition", "uri": details['composition_uri']['value']} 

        elif impl_type == 'script': 

            script_uri = details['script_path']['value'] 

            parsed_uri = urlparse(unquote(script_uri)) 

            local_path_str = parsed_uri.path 

 

            # Fix for Windows paths: remove the first '/' from /C:/... 

            if sys.platform == "win32" and local_path_str.startswith('/'): 

                local_path_str = local_path_str[1:] 

 

            local_path = Path(local_path_str) 

 

            return {"type": "script", "path": local_path, "method": details['method_name']['value']} 

        else: 

            raise TypeError(f"Unknown implementation for <{function_uri}>") 

 

    def _execute_script(self, script_details, arguments): 

        """Loads and runs a Python script from a local file.""" 

        path, method_name = script_details['path'], script_details['method'] 

        print(f"  -> Running script: {path.name} -> {method_name}() with {len(arguments)} 

argument(s)") 

        if not path.exists(): raise FileNotFoundError(f"Script file not found: {path}") 

        spec = importlib.util.spec_from_file_location(path.stem, path) 

        module = importlib.util.module_from_spec(spec) 

        sys.modules[spec.name] = module 

        spec.loader.exec_module(module) 

        method_to_call = getattr(module, method_name) 

        return method_to_call(*arguments) 

 

    def _execute_composition(self, composition_uri, composition_arguments): 

        """ 

        Parses a composition and executes its internal functions using a robust 

        topological sort for dependency resolution. 

        """ 

        # Get the main "wrapper" function that this composition implements. 

        # This is crucial for filtering. 

        wrapper_func_uri = self._get_function_for_composition(composition_uri) 

 

        # --- GRAPH BUILDING (FIXED LOGIC) --- 

        adj = {} 

        in_degree = {} 

 

        # **FIX 1: Get ALL constituent functions and EXCLUDE the wrapper function.** 
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        # The graph should only contain the internal steps. 

        all_funcs_query = f""" 

        PREFIX fnoc: <https://w3id.org/function/vocabulary/composition#> 

        SELECT DISTINCT ?func WHERE {{ 

            <{composition_uri}> fnoc:composedOf [ ?p [ fnoc:constituentFunction ?func ] ] . 

            FILTER(?func != <{wrapper_func_uri}>) 

        }} 

        """ 

        all_internal_funcs = {f['func']['value'] for f in self._run_query(all_funcs_query)} 

        for func in all_internal_funcs: 

            adj.setdefault(func, []) 

            in_degree.setdefault(func, 0) 

 

        internal_links_query = f""" 

        PREFIX fnoc: <https://w3id.org/function/vocabulary/composition#> 

        SELECT DISTINCT ?source ?target WHERE {{ 

            <{composition_uri}> fnoc:composedOf [ 

                fnoc:mapFrom [ fnoc:constituentFunction ?source ] ; 

                fnoc:mapTo   [ fnoc:constituentFunction ?target ] 

            ] . 

            FILTER(?source != <{wrapper_func_uri}> && ?target != <{wrapper_func_uri}>) 

        }} 

        """ 

        links = self._run_query(internal_links_query) 

        for link in links: 

            source, target = link['source']['value'], link['target']['value'] 

            if source in adj and target in adj:  # Ensure both are internal funcs 

                adj[source].append(target) 

                in_degree[target] += 1 

 

        # --- TOPOLOGICAL SORT EXECUTION --- 

        execution_queue = deque([f for f in all_internal_funcs if in_degree.get(f, 0) == 0]) 

        internal_output_context = {} 

        executed_count = 0 

 

        while execution_queue: 

            func_uri = execution_queue.popleft() 

 

            print(f"  -- Preparing to run internal function: <{Path(func_uri).name}>") 

 

            # Use the robust helper to get the parameters in the correct order 

            ordered_params = self._get_ordered_parameters(func_uri) 

            resolved_args = [] 
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            for param_uri in ordered_params: 

                source = self._get_source_for_parameter(composition_uri, func_uri, param_uri) 

                if source['type'] == 'main_argument': 

                    # Get ordered params for the WRAPPER to find the index 

                    wrapper_params = self._get_ordered_parameters(wrapper_func_uri) 

                    arg_pos = wrapper_params.index(source['param_uri']) 

                    resolved_args.append(composition_arguments[arg_pos]) 

                elif source['type'] == 'internal_output': 

                    resolved_args.append(internal_output_context[source['source_function']]) 

            if "AreaRatio" in func_uri: 

                print("\n\n" + "=" * 50) 

                print("DEBUG: ARGUMENTS BEING SENT TO 'AreaRatio'") 

                print(resolved_args) 

                print("=" * 50 + "\n\n") 

            output = self.execute_function(func_uri, resolved_args) 

            internal_output_context[func_uri] = output 

            executed_count += 1 

 

            for next_func in adj.get(func_uri, []): 

                in_degree[next_func] -= 1 

                if in_degree[next_func] == 0: 

                    execution_queue.append(next_func) 

 

        if executed_count < len(all_internal_funcs): 

            raise RuntimeError( 

                "Workflow execution failed: A cycle was detected or the graph is disconnected." 

            ) 

 

        return self._get_composition_final_output(composition_uri, internal_output_context, 

wrapper_func_uri) 

 

    def _get_source_for_parameter(self, comp_uri, target_func, target_param): 

        """Finds where an input parameter for an internal function should come from.""" 

        query = f""" 

                PREFIX fnoc: <https://w3id.org/function/vocabulary/composition#> 

                SELECT ?source_func ?source_param ?source_output 

                WHERE {{ 

                    <{comp_uri}> fnoc:composedOf [ 

                        fnoc:mapTo   [ fnoc:constituentFunction <{target_func}> ; fnoc:functionParameter 

<{target_param}> ] ; 

 

                        # We assign the blank node to the variable ?mapFromNode 
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                        fnoc:mapFrom ?mapFromNode  

                    ] . 

 

                    ?mapFromNode fnoc:constituentFunction ?source_func . 

                    OPTIONAL {{ ?mapFromNode fnoc:functionParameter ?source_param . }} 

                    OPTIONAL {{ ?mapFromNode fnoc:functionOutput ?source_output . }} 

 

                }} LIMIT 1 

                """ 

        results = self._run_query(query) 

        if not results: raise LookupError(f"Could not find source for param <{target_param}>") 

 

        source = results[0] 

        source_func = source['source_func']['value'] 

        wrapper_func_uri = self._get_function_for_composition(comp_uri) 

 

        if source_func == wrapper_func_uri: 

            return {'type': 'main_argument', 'param_uri': source['source_param']['value']} 

        else: 

            return {'type': 'internal_output', 'source_function': source_func} 

 

    def _get_composition_final_output(self, composition_uri, internal_output_context, 

wrapper_func_uri): 

        """Gets the final result by finding which internal function provides the wrapper's output.""" 

        query = f""" 

        PREFIX fnoc: <https://w3id.org/function/vocabulary/composition#> 

        SELECT ?source_func WHERE {{ 

             <{composition_uri}> fnoc:composedOf [ 

                fnoc:mapTo [ fnoc:constituentFunction <{wrapper_func_uri}> ] ; 

                fnoc:mapFrom [ fnoc:constituentFunction ?source_func ] 

             ] . 

        }} LIMIT 1 

        """ 

        results = self._run_query(query) 

        if not results: raise LookupError(f"Composition <{composition_uri}> has no final output 

mapping.") 

 

        final_source_func = results[0]['source_func']['value'] 

        if final_source_func not in internal_output_context: 

            raise KeyError(f"The final output function <{Path(final_source_func).name}> was never 

executed.") 

        return internal_output_context[final_source_func] 
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    def _get_ordered_parameters(self, function_uri): 

        """Reliably gets the ordered list of parameters for ANY function.""" 

        if function_uri in self.parameter_order_cache: 

            return self.parameter_order_cache[function_uri] 

 

        # The canonical way to define parameter order is via the rdf:List in fno:expects. 

        query = f""" 

        PREFIX fno: <https://w3id.org/function/ontology#> 

        PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

        SELECT ?param WHERE {{ 

          <{function_uri}> fno:expects/rdf:rest*/rdf:first ?param . 

        }} 

        """ 

        # Note: This query returns parameters in the order they appear in the list. 

        params = [p['param']['value'] for p in self._run_query(query)] 

        self.parameter_order_cache[function_uri] = params 

        return params 

 

    def _get_function_for_composition(self, composition_uri): 

        """Helper to find which main function a composition implements.""" 

        query = f""" 

        PREFIX fno: <https://w3id.org/function/ontology#>  

        PREFIX imp: <http://www.example.com/implementation/>  

        SELECT ?func WHERE {{  

            ?impl imp:implements <{composition_uri}> .  

            ?map fno:implementation ?impl ; fno:function ?func .  

        }} LIMIT 1""" 

        results = self._run_query(query) 

        if not results: raise LookupError(f"Could not find function for composition 

<{composition_uri}>") 

        return results[0]['func']['value'] 

 

    def start_from_execution(self, execution_uri): 

        """The main entry point. Kicks off the workflow from an fno:Execution instance.""" 

        print(f"--- Starting workflow from Execution <{execution_uri}> ---") 

        func_query = f"PREFIX fno: <https://w3id.org/function/ontology#> SELECT ?func 

WHERE {{ <{execution_uri}> fno:executes ?func . }}" 

        func_results = self._run_query(func_query) 

        if not func_results: raise LookupError(f"Execution <{execution_uri}> does not specify 

`fno:executes`.") 

        top_level_function_uri = func_results[0]['func']['value'] 

 

        ordered_params = self._get_ordered_parameters(top_level_function_uri) 
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        initial_arguments = [] 

        for param_uri in ordered_params: 

            predicate_query = f"PREFIX fno: <https://w3id.org/function/ontology#> SELECT ?pred 

WHERE {{ <{param_uri}> fno:predicate ?pred . }}" 

            pred_results = self._run_query(predicate_query) 

            if not pred_results: raise LookupError(f"Parameter <{param_uri}> does not define 

`fno:predicate`.") 

            predicate = pred_results[0]['pred']['value'] 

 

            value_query = f"SELECT ?val WHERE {{ <{execution_uri}> <{predicate}> ?val . }}" 

            val_results = self._run_query(value_query) 

            if not val_results: raise ValueError( 

                f"Execution <{execution_uri}> is missing value for predicate <{predicate}>.") 

            value = val_results[0]['val']['value'] 

            initial_arguments.append(value) 

 

        print(f"  -> Found initial arguments: {initial_arguments}") 

 

        final_result = self.execute_function(top_level_function_uri, initial_arguments) 

 

        print("\n--- WORKFLOW COMPLETE ---") 

        print(f"Final Result: {final_result}") 

        return final_result 

 

 

# ================================================================== 

# MAIN EXECUTION BLOCK 

# ================================================================== 

 

if __name__ == "__main__": 

    try: 

        orchestrator = SimpleOrchestrator(SPARQL_QUERY_ENDPOINT) 

        orchestrator.start_from_execution(TOP_LEVEL_EXECUTION_URI) 

    except Exception as e: 

        print(f"\n!!!!!!!!!! ORCHESTRATION FAILED !!!!!!!!!!") 

        print(f"ERROR: {e}") 

        import traceback 

 

        traceback.print_exc() 

 

  



Appendices  

192 

ALGORITHM SCRIPTS 

 

TEMPORAL ADJUSTMENT  

 

from SPARQLWrapper import SPARQLWrapper, JSON, POST 

 

SPARQL_QUERY_ENDPOINT = "http://localhost:7200/repositories/DisaggregationProba9" 

SPARQL_UPDATE_ENDPOINT = 

"http://localhost:7200/repositories/DisaggregationProba9/statements" 

 

def doTemporalAdjustment(source_zone_query): 

    """ 

    Executes a query to find a source zone, calculates a dummy adjusted population, inserts it, and 

returns the SINGLE URI of the processed source zone. 

    """ 

    sparql = SPARQLWrapper(SPARQL_QUERY_ENDPOINT) 

    sparql.setReturnFormat(JSON) 

    sparql.setMethod(POST) 

    sparql.setQuery(source_zone_query) 

 

    results = sparql.query().convert()["results"]["bindings"] 

    if not results: 

        raise ValueError("Source zone query returned no results.") 

 

    source_zone_uri = results[0]['sourceZone']['value'] 

 

    #Placeholder for a real temporal adjustment calculation 

    adjusted_population = 12312.0 

    print(f"Adjusted population for {source_zone_uri} = {adjusted_population}") 

 

    # Insert the new data 

    update_sparql = SPARQLWrapper(SPARQL_UPDATE_ENDPOINT) 

    update_sparql.setMethod(POST) 

    insert_query = f""" 

    PREFIX bdasy: <http://www.example.com/ontology/buildingareadasy#> 

    PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

    INSERT DATA {{ 

        <{source_zone_uri}> bdasy:hasAdjustedPopulation "{adjusted_population}"^^xsd:double . 

    }} 

    """ 

    update_sparql.setQuery(insert_query) 

    update_sparql.query() 
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    # Return a single string, not a list 

    return source_zone_uri 

 

 

 

AREA RATIO  

 

import sys 

import uuid 

from SPARQLWrapper import SPARQLWrapper, JSON, POST 

from shapely.wkt import loads 

 

# Define SPARQL endpoints as constants 

SPARQL_QUERY_ENDPOINT = "http://localhost:7200/repositories/DisaggregationProba9" 

SPARQL_UPDATE_ENDPOINT = 

"http://localhost:7200/repositories/DisaggregationProba9/statements" 

DATA_INSERT_CHUNK_SIZE = 500  # For inserting area/ratio data 

LIST_INSERT_CHUNK_SIZE = 500  # For creating the rdfs:List itself 

 

 

def create_rdfs_list_in_chunks(items, sparql_update_endpoint): 

    """ 

    Creates an rdfs:List in the triplestore using chunked INSERTs to avoid POST size limits, and 

returns its head URI. 

    """ 

    if not items: 

        return "http://www.w3.org/1999/02/22-rdf-syntax-ns#nil" 

 

    # --- Step 1: Pre-generate all unique URIs for the list nodes --- 

    base_uri = "http://www.example.com/data/list/" 

    list_node_uris = [f"<{base_uri}{uuid.uuid4()}>" for _ in range(len(items))] 

    head_uri = list_node_uris[0] 

 

    # --- Step 2: Build all triples in memory first --- 

    all_triples = [] 

    for i, node_uri in enumerate(list_node_uris): 

        # Add the rdf:first triple (the actual item) 

        item_uri = f"<{items[i]}>" 

        all_triples.append(f"{node_uri} <http://www.w3.org/1999/02/22-rdf-syntax-ns#first> 

{item_uri} .") 

 

        # Add the rdf:rest triple (link to the next node or rdf:nil) 

        next_node_uri = list_node_uris[i + 1] if i + 1 < len( 
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            list_node_uris) else "<http://www.w3.org/1999/02/22-rdf-syntax-ns#nil>" 

        all_triples.append(f"{node_uri} <http://www.w3.org/1999/02/22-rdf-syntax-ns#rest> 

{next_node_uri} .") 

 

    # --- Step 3: Insert the triples in chunks --- 

    update_sparql = SPARQLWrapper(sparql_update_endpoint) 

    update_sparql.setMethod(POST) 

 

    print(f"  -> Inserting {len(all_triples)} list triples in chunks...") 

    for i in range(0, len(all_triples), LIST_INSERT_CHUNK_SIZE * 2):  # *2 because each item 

creates 2 triples 

        chunk = all_triples[i:i + LIST_INSERT_CHUNK_SIZE * 2] 

        insert_query = f"INSERT DATA {{ {' '.join(chunk)} }}" 

        update_sparql.setQuery(insert_query) 

        update_sparql.query() 

 

    return head_uri.strip('<>')  # Return the URI as a plain string 

 

def doAreaRatio(building_query): 

    sparql = SPARQLWrapper(SPARQL_QUERY_ENDPOINT) 

    sparql.setReturnFormat(JSON) 

    sparql.setMethod(POST) 

 

    print("Step 1: Fetching the list of building URIs...") 

    sparql.setQuery(building_query) 

    results_buildings = sparql.query().convert()["results"]["bindings"] 

    building_uris = [row['building']['value'] for row in results_buildings] 

 

    if not building_uris: 

        print("  -> No buildings found. Nothing to process.") 

        return "http://www.w3.org/1999/02/22-rdf-syntax-ns#nil" 

    print(f"  -> Found {len(building_uris)} buildings to process.") 

 

    print("Step 2: Fetching all geometries in a single batch query...") 

    values_clause = " ".join([f"<{uri}>" for uri in building_uris]) 

    single_geom_query = f"PREFIX geo: <http://www.opengis.net/ont/geosparql#> SELECT 

?building ?wkt WHERE {{ VALUES ?building {{ {values_clause} }} ?building 

geo:hasGeometry/geo:asWKT ?wkt . }}" 

    sparql.setQuery(single_geom_query) 

    geometry_results = sparql.query().convert()["results"]["bindings"] 

    wkt_lookup = {row['building']['value']: row['wkt']['value'] for row in geometry_results} 

    print(f"  -> Successfully retrieved {len(wkt_lookup)} geometries.") 
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    print("Step 3: Calculating areas in memory...") 

    building_areas = [] 

    total_area = 0.0 

    for uri in building_uris: 

        if uri in wkt_lookup: 

            wkt = wkt_lookup[uri] 

            try: 

                area = loads(wkt).area 

                building_areas.append({'uri': uri, 'area': area}) 

                total_area += area 

            except Exception as e: 

                print(f"  -> WARNING: Could not calculate area for <{uri}>. Error: {e}") 

 

    if total_area == 0: 

        print("  -> Total area is zero. Cannot calculate ratios. Aborting.") 

        return "http://www.w3.org/1999/02/22-rdf-syntax-ns#nil" 

    print(f"  -> Total calculated area: {total_area}") 

 

    print(f"Step 4: Preparing to insert data in chunks of {DATA_INSERT_CHUNK_SIZE} 

buildings...") 

    update_sparql = SPARQLWrapper(SPARQL_UPDATE_ENDPOINT) 

    update_sparql.setMethod(POST) 

    for i in range(0, len(building_areas), DATA_INSERT_CHUNK_SIZE): 

        chunk = building_areas[i:i + DATA_INSERT_CHUNK_SIZE] 

        print(f"  -> Processing data chunk {i // DATA_INSERT_CHUNK_SIZE + 1}...") 

        insert_triples = [] 

        for building in chunk: 

            ratio = building['area'] / total_area 

            uri = building['uri'] 

            area = building['area'] 

            area_triple = f'<{uri}> <http://www.example.com/ontology/buildingareadasy#hasArea> 

"{area}"^^<http://www.w3.org/2001/XMLSchema#double> .' 

            ratio_triple = f'<{uri}> 

<http://www.example.com/ontology/buildingareadasy#hasAreaRatio> 

"{ratio}"^^<http://www.w3.org/2001/XMLSchema#double> .' 

            insert_triples.append(area_triple) 

            insert_triples.append(ratio_triple) 

        insert_query_body = "\n".join(insert_triples) 

        batch_insert_query = f"INSERT DATA {{ {insert_query_body} }}" 

        update_sparql.setQuery(batch_insert_query) 

        update_sparql.query() 

    print("  -> All data chunks inserted successfully.") 
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    print("Step 5: Creating new rdfs:List for the processed buildings...") 

    new_list_uri = create_rdfs_list_in_chunks(building_uris, SPARQL_UPDATE_ENDPOINT) 

    print(f"  -> New list created: <{new_list_uri}>") 

 

    return new_list_uri  

 

 

 

DENSITY ESTIMATION 

 

import sys 

from SPARQLWrapper import SPARQLWrapper, JSON, POST 

 

# Define SPARQL endpoints as constants 

SPARQL_QUERY_ENDPOINT = "http://localhost:7200/repositories/DisaggregationProba9" 

SPARQL_UPDATE_ENDPOINT = 

"http://localhost:7200/repositories/DisaggregationProba9/statements" 

INSERT_CHUNK_SIZE = 500  # Number of buildings to insert per batch 

 

def unpack_rdfs_list(list_head_uri, sparql_endpoint): 

    """ 

    Takes the URI of the head of an rdfs:List and queries the graph 

    to return a standard Python list of its members' URIs. 

    """ 

    sparql = SPARQLWrapper(sparql_endpoint) 

    sparql.setReturnFormat(JSON) 

    query = f""" 

    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

    SELECT ?member WHERE {{ 

      <{list_head_uri}> rdf:rest* / rdf:first ?member . 

    }} 

    """ 

    sparql.setQuery(query) 

    results = sparql.query().convert() 

    if not results["results"]["bindings"]: 

        return [] 

    return [item["member"]["value"] for item in results["results"]["bindings"]] 

 

def doDensityEstimation(source_zone_uri, building_list_uri): 

    """ 

    Calculates the overall population density for a source zone and attaches this value to every 

building in the provided list. 

    """ 
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    #Ensure source_zone_uri is a string, not a list --- 

    if isinstance(source_zone_uri, list) and source_zone_uri: 

        source_zone_uri = source_zone_uri[0]  # Take the first element 

    # ------------------------------------------------------------------- 

    # Define namespaces 

    bdasy = "http://www.example.com/ontology/buildingareadasy#" 

 

    # --- Step 0: Unpack the rdfs:List to get a Python list of building URIs --- 

    print("Step 0: Unpacking the rdfs:List...") 

    building_footprints = unpack_rdfs_list(building_list_uri, SPARQL_QUERY_ENDPOINT) 

    if not building_footprints: 

        print("  -> Input list is empty. Nothing to process.") 

        return building_list_uri  # Return the original URI as required 

    print(f"  -> Found {len(building_footprints)} buildings in the list.") 

 

    sparql = SPARQLWrapper(SPARQL_QUERY_ENDPOINT) 

    sparql.setReturnFormat(JSON) 

    sparql.setMethod(POST)  # Use POST for potentially large queries 

 

    # --- Step 1: Get the adjusted population from the SourceZone --- 

    print(f"Step 1: Fetching adjusted population from <{source_zone_uri}>...") 

    query_pop = f""" 

        PREFIX bdasy: <{bdasy}> 

        SELECT ?adjusted WHERE {{ 

            <{source_zone_uri}> bdasy:hasAdjustedPopulation ?adjusted . 

        }}     

        """ 

    sparql.setQuery(query_pop) 

    results_pop = sparql.query().convert() 

    if not results_pop["results"]["bindings"]: 

        raise ValueError(f"No adjusted population found for sourceZone <{source_zone_uri}>") 

    adjusted_population = float(results_pop["results"]["bindings"][0]["adjusted"]["value"]) 

    print(f"  -> Adjusted population: {adjusted_population}") 

 

    # --- Step 2: Get the area for all buildings in a single query --- 

    print("Step 2: Getting total building area in a single batch query...") 

 

    values_clause = " ".join([f"<{uri}>" for uri in building_footprints]) 

    query_area = f""" 

        PREFIX bdasy: <{bdasy}> 

        SELECT (SUM(?area) as ?totalArea) 

        WHERE {{ 

            VALUES ?building {{ {values_clause} }} 



Appendices  

198 

            ?building bdasy:hasArea ?area . 

        }} 

        """ 

    sparql.setQuery(query_area) 

    results_area = sparql.query().convert() 

 

    # Initialize total_area to 0 

    total_area = 0.0 

    if results_area["results"]["bindings"]: 

        total_area_str = results_area["results"]["bindings"][0].get("totalArea", {}).get("value") 

        if total_area_str: 

            total_area = float(total_area_str) 

 

    print(f"  -> Total area: {total_area}") 

 

    # --- Step 3: Calculate population density --- 

    print("Step 3: Calculating population density...") 

    density = 0.0 

    if total_area > 0: 

        density = adjusted_population / total_area 

    print(f"  -> Calculated density: {density}") 

 

    # --- Step 4: Attach population density to every building in chunks --- 

    print(f"Step 4: Preparing to insert density data in chunks of {INSERT_CHUNK_SIZE} 

buildings...") 

 

    update_sparql = SPARQLWrapper(SPARQL_UPDATE_ENDPOINT) 

    update_sparql.setMethod(POST) 

 

    for i in range(0, len(building_footprints), INSERT_CHUNK_SIZE): 

        chunk = building_footprints[i:i + INSERT_CHUNK_SIZE] 

        print(f"  -> Processing chunk {i // INSERT_CHUNK_SIZE + 1}...") 

 

        insert_triples = [] 

        for building_uri in chunk: 

            density_triple = f'<{building_uri}> bdasy:hasPopulationDensity 

"{density}"^^<http://www.w3.org/2001/XMLSchema#double> .' 

            insert_triples.append(density_triple) 

 

        insert_query_body = "\n".join(insert_triples) 

        batch_insert_query = f"PREFIX bdasy: <{bdasy}>\nINSERT DATA {{ {insert_query_body} 

}}" 
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        update_sparql.setQuery(batch_insert_query) 

        update_sparql.query() 

 

    print("  -> All chunks inserted successfully.") 

    return building_list_uri  

 

 

 

DENSITY RATIO 

 

import sys 

from SPARQLWrapper import SPARQLWrapper, JSON, POST 

 

# Define SPARQL endpoints as constants 

SPARQL_QUERY_ENDPOINT = "http://localhost:7200/repositories/DisaggregationProba9" 

SPARQL_UPDATE_ENDPOINT = 

"http://localhost:7200/repositories/DisaggregationProba9/statements" 

INSERT_CHUNK_SIZE = 500  # Number of buildings to insert per batch 

 

def unpack_rdfs_list(list_head_uri, sparql_endpoint): 

    """ 

    Takes the URI of the head of an rdfs:List and queries the graph 

    to return a standard Python list of its members' URIs. 

    """ 

    if list_head_uri == "http://www.w3.org/1999/02/22-rdf-syntax-ns#nil": 

        return [] 

 

    sparql = SPARQLWrapper(sparql_endpoint) 

    sparql.setReturnFormat(JSON) 

    query = f""" 

    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

    SELECT ?member WHERE {{ <{list_head_uri}> rdf:rest* / rdf:first ?member . }} 

    """ 

    sparql.setQuery(query) 

    results = sparql.query().convert() 

    if not results["results"]["bindings"]: 

        return [] 

    return [item["member"]["value"] for item in results["results"]["bindings"]] 

 

def doDensityRatio(building_list_uri): 

    """ 

    Calculates the normalized density ratio for each building in a list. 

    """ 
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    # --- Step 0: Unpack the list of buildings --- 

    print("Step 0: Unpacking the rdfs:List...") 

    building_uris = unpack_rdfs_list(building_list_uri, SPARQL_QUERY_ENDPOINT) 

    if not building_uris: 

        print("  -> Input list is empty or invalid. Nothing to process.") 

        return building_list_uri 

 

    print(f"  -> Found {len(building_uris)} buildings in the list.") 

 

    sparql = SPARQLWrapper(SPARQL_QUERY_ENDPOINT) 

    sparql.setReturnFormat(JSON) 

    sparql.setMethod(POST) 

 

    # --- Step 1: Fetch all population densities in a single query --- 

    print("Step 1: Fetching all population densities in a single batch query...") 

    values_clause = " ".join([f"<{uri}>" for uri in building_uris]) 

    density_query = f""" 

    PREFIX bdasy: <http://www.example.com/ontology/buildingareadasy#> 

    SELECT ?building ?density 

    WHERE {{ 

        VALUES ?building {{ {values_clause} }} 

        ?building bdasy:hasPopulationDensity ?density . 

    }} 

    """ 

    sparql.setQuery(density_query) 

    results = sparql.query().convert()["results"]["bindings"] 

 

    # --- Step 2: Calculate the sum of densities in Python --- 

    print("Step 2: Calculating sum of densities in memory...") 

    building_densities = [] 

    total_density = 0.0 

    for row in results: 

        density = float(row['density']['value']) 

        building_densities.append({'uri': row['building']['value'], 'density': density}) 

        total_density += density 

 

    if total_density == 0: 

        print("  -> Total density is zero. Cannot calculate ratios. Aborting.") 

        return building_list_uri 

 

    print(f"  -> Total density sum: {total_density}") 

 

    # --- Step 3: Insert the new density ratios in chunks --- 
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    print(f"Step 3: Preparing to insert density ratios in chunks of {INSERT_CHUNK_SIZE} 

buildings...") 

    update_sparql = SPARQLWrapper(SPARQL_UPDATE_ENDPOINT) 

    update_sparql.setMethod(POST) 

 

    for i in range(0, len(building_densities), INSERT_CHUNK_SIZE): 

        chunk = building_densities[i:i + INSERT_CHUNK_SIZE] 

        print(f"  -> Processing chunk {i // INSERT_CHUNK_SIZE + 1}...") 

 

        insert_triples = [] 

        for building in chunk: 

            # Calculate the normalized ratio 

            ratio = building['density'] / total_density 

 

            ratio_triple = f'<{building["uri"]}> 

<http://www.example.com/ontology/buildingareadasy#hasDensityRatio> 

"{ratio}"^^<http://www.w3.org/2001/XMLSchema#double> .' 

            insert_triples.append(ratio_triple) 

 

        insert_query_body = "\n".join(insert_triples) 

        batch_insert_query = f"INSERT DATA {{ {insert_query_body} }}" 

 

        update_sparql.setQuery(batch_insert_query) 

        update_sparql.query() 

 

    print("  -> All chunks inserted successfully.") 

 

    # Return the original list URI for the next step in the workflow 

    return building_list_uri   

 

 

 

TOTAL FRACTION 

 

import sys 

from SPARQLWrapper import SPARQLWrapper, JSON, POST 

 

# Define SPARQL endpoints as constants 

SPARQL_QUERY_ENDPOINT = "http://localhost:7200/repositories/DisaggregationProba9" 

SPARQL_UPDATE_ENDPOINT = 

"http://localhost:7200/repositories/DisaggregationProbass9/statements" 

INSERT_CHUNK_SIZE = 500  # Number of buildings to insert per batch 
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def unpack_rdfs_list(list_head_uri, sparql_endpoint): 

    """ 

    Takes the URI of the head of an rdfs:List and queries the graph 

    to return a standard Python list of its members' URIs. 

    """ 

    if list_head_uri == "http://www.w3.org/1999/02/22-rdf-syntax-ns#nil": 

        return [] 

 

    sparql = SPARQLWrapper(sparql_endpoint) 

    sparql.setReturnFormat(JSON) 

    query = f""" 

    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

    SELECT ?member WHERE {{ <{list_head_uri}> rdf:rest* / rdf:first ?member . }} 

    """ 

    sparql.setQuery(query) 

    results = sparql.query().convert() 

    if not results["results"]["bindings"]: 

        return [] 

    return [item["member"]["value"] for item in results["results"]["bindings"]] 

 

 

def doTotalFraction(building_list_uri): 

    """ 

    Calculates the total fraction for each building based on its 

    area ratio and density ratio. 

    """ 

    # --- Step 0: Unpack the list of buildings --- 

    print("Step 0: Unpacking the rdfs:List...") 

    building_uris = unpack_rdfs_list(building_list_uri, SPARQL_QUERY_ENDPOINT) 

    if not building_uris: 

        print("  -> Input list is empty or invalid. Nothing to process.") 

        return building_list_uri 

 

    print(f"  -> Found {len(building_uris)} buildings in the list.") 

 

    sparql = SPARQLWrapper(SPARQL_QUERY_ENDPOINT) 

    sparql.setReturnFormat(JSON) 

    sparql.setMethod(POST) 

 

    # --- Step 1: Fetch all area and density ratios in a single query --- 

    print("Step 1: Fetching all area and density ratios in a single batch query...") 

    values_clause = " ".join([f"<{uri}>" for uri in building_uris]) 
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    ratios_query = f""" 

    PREFIX bdasy: <http://www.example.com/ontology/buildingareadasy#> 

    SELECT ?building ?areaRatio ?densityRatio 

    WHERE {{ 

        VALUES ?building {{ {values_clause} }} 

        ?building bdasy:hasAreaRatio ?areaRatio ; 

                  bdasy:hasDensityRatio ?densityRatio . 

    }} 

    """ 

    sparql.setQuery(ratios_query) 

    results = sparql.query().convert()["results"]["bindings"] 

 

    # --- Step 2: Calculate products and the sum of products in memory --- 

    print("Step 2: Calculating products and sum in memory...") 

    building_products = [] 

    total_product_sum = 0.0 

    for row in results: 

        area_ratio = float(row['areaRatio']['value']) 

        density_ratio = float(row['densityRatio']['value']) 

        product = area_ratio * density_ratio 

 

        building_products.append({'uri': row['building']['value'], 'product': product}) 

        total_product_sum += product 

 

    if total_product_sum == 0: 

        print("  -> Sum of products is zero. Cannot calculate fractions. Aborting.") 

        return building_list_uri 

 

    print(f"  -> Sum of (AreaRatio * DensityRatio) products: {total_product_sum}") 

 

    # --- Step 3: Insert the new total fractions in chunks --- 

    print(f"Step 3: Preparing to insert total fractions in chunks of {INSERT_CHUNK_SIZE} 

buildings...") 

    update_sparql = SPARQLWrapper(SPARQL_UPDATE_ENDPOINT) 

    update_sparql.setMethod(POST) 

 

    for i in range(0, len(building_products), INSERT_CHUNK_SIZE): 

        chunk = building_products[i:i + INSERT_CHUNK_SIZE] 

        print(f"  -> Processing chunk {i // INSERT_CHUNK_SIZE + 1}...") 

 

        insert_triples = [] 

        for building in chunk: 

            # Calculate the final fraction 
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            total_fraction = building['product'] / total_product_sum 

 

            fraction_triple = f'<{building["uri"]}> 

<http://www.example.com/ontology/buildingareadasy#hasTotalFraction> 

"{total_fraction}"^^<http://www.w3.org/2001/XMLSchema#double> .' 

            insert_triples.append(fraction_triple) 

 

        insert_query_body = "\n".join(insert_triples) 

        batch_insert_query = f"INSERT DATA {{ {insert_query_body} }}" 

 

        update_sparql.setQuery(batch_insert_query) 

        update_sparql.query() 

 

    print("  -> All chunks inserted successfully.") 

 

    # Return the original list URI for the next step in the workflow 

    return building_list_uri   

 

 

 

DISAGGREGATION 

 

import sys 

from SPARQLWrapper import SPARQLWrapper, JSON, POST 

 

# Define SPARQL endpoints as constants 

SPARQL_QUERY_ENDPOINT = "http://localhost:7200/repositories/DisaggregationProba9" 

SPARQL_UPDATE_ENDPOINT = 

"http://localhost:7200/repositories/DisaggregationProba9/statements" 

INSERT_CHUNK_SIZE = 500  # Number of buildings to insert per batch 

 

def unpack_rdfs_list(list_head_uri, sparql_endpoint): 

    """ 

    Takes the URI of the head of an rdfs:List and queries the graph to return a standard Python 

list of its members' URIs. 

    """ 

    if list_head_uri == "http://www.w3.org/1999/02/22-rdf-syntax-ns#nil": 

        return [] 

 

    sparql = SPARQLWrapper(sparql_endpoint) 

    sparql.setReturnFormat(JSON) 

    query = f""" 

    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
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    SELECT ?member WHERE {{ <{list_head_uri}> rdf:rest* / rdf:first ?member . }} 

    """ 

    sparql.setQuery(query) 

    results = sparql.query().convert() 

    if not results["results"]["bindings"]: 

        return [] 

    return [item["member"]["value"] for item in results["results"]["bindings"]] 

 

 

def doDisaggregation(source_zone_uri, building_list_uri): 

    """ 

    Calculates the disaggregated population for each building in a list 

    by multiplying the total adjusted population by each building's total fraction. 

    """ 

    # --- Step 0: Unpack the list of buildings --- 

    print("Step 0: Unpacking the building rdfs:List...") 

    building_uris = unpack_rdfs_list(building_list_uri, SPARQL_QUERY_ENDPOINT) 

    if not building_uris: 

        print("  -> Input list is empty or invalid. Nothing to process.") 

        return building_list_uri 

 

    print(f"  -> Found {len(building_uris)} buildings in the list.") 

 

    sparql = SPARQLWrapper(SPARQL_QUERY_ENDPOINT) 

    sparql.setReturnFormat(JSON) 

    sparql.setMethod(POST) 

 

    # --- Step 1: Get the adjusted population from the source zone --- 

    print(f"Step 1: Fetching adjusted population from source zone <{source_zone_uri}>...") 

    query_pop = f""" 

    PREFIX bdasy: <http://www.example.com/ontology/buildingareadasy#> 

    SELECT ?adjustedPop WHERE {{ 

        <{source_zone_uri}> bdasy:hasAdjustedPopulation ?adjustedPop . 

    }} 

    """ 

    sparql.setQuery(query_pop) 

    results_pop = sparql.query().convert()["results"]["bindings"] 

    if not results_pop: 

        raise ValueError(f"No adjusted population found for sourceZone {source_zone_uri}") 

    adjusted_population = float(results_pop[0]["adjustedPop"]["value"]) 

    print(f"  -> Adjusted population found: {adjusted_population}") 

 

    # --- Step 2: Fetch all total fractions in a single query --- 
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    print("Step 2: Fetching all total fractions in a single batch query...") 

    values_clause = " ".join([f"<{uri}>" for uri in building_uris]) 

 

    fractions_query = f""" 

    PREFIX bdasy: <http://www.example.com/ontology/buildingareadasy#> 

    SELECT ?building ?totalFraction 

    WHERE {{ 

        VALUES ?building {{ {values_clause} }} 

        ?building bdasy:hasTotalFraction ?totalFraction . 

    }} 

    """ 

    sparql.setQuery(fractions_query) 

    fraction_results = sparql.query().convert()["results"]["bindings"] 

 

    # --- Step 3: Calculate disaggregated population and prepare for insert --- 

    print("Step 3: Calculating disaggregated population and preparing for batch insert...") 

    insert_triples = [] 

    for row in fraction_results: 

        building_uri = row['building']['value'] 

        total_fraction = float(row['totalFraction']['value']) 

 

        # Calculate the final disaggregated population for this building 

        disagg_pop = adjusted_population * total_fraction 

 

        # Create the triple string for this building 

        pop_triple = f'<{building_uri}> 

<http://www.example.com/ontology/buildingareadasy#hasDisaggregatedPopulation> 

"{disagg_pop}"^^<http://www.w3.org/2001/XMLSchema#double> .' 

        insert_triples.append(pop_triple) 

 

    # --- Step 4: Insert the new disaggregated populations in chunks --- 

    print(f"Step 4: Preparing to insert disaggregated populations in chunks of 

{INSERT_CHUNK_SIZE} buildings...") 

    update_sparql = SPARQLWrapper(SPARQL_UPDATE_ENDPOINT) 

    update_sparql.setMethod(POST) 

 

    for i in range(0, len(insert_triples), INSERT_CHUNK_SIZE): 

        chunk = insert_triples[i:i + INSERT_CHUNK_SIZE] 

        print(f"  -> Processing chunk {i // INSERT_CHUNK_SIZE + 1}...") 

 

        insert_query_body = "\n".join(chunk) 

        batch_insert_query = f"INSERT DATA {{ {insert_query_body} }}" 
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        update_sparql.setQuery(batch_insert_query) 

        update_sparql.query() 

 

    print("  -> All chunks inserted successfully.") 

 

    # Return the original list URI for the final aggregation step 

    return building_list_uri  

 

 

 

ARBITRARY AGGREGATION 

 

import sys 

from SPARQLWrapper import SPARQLWrapper, JSON, POST 

 

# Define SPARQL endpoints as constants 

SPARQL_QUERY_ENDPOINT = "http://localhost:7200/repositories/DisaggregationProba9" 

SPARQL_UPDATE_ENDPOINT = 

"http://localhost:7200/repositories/DisaggregationProba9/statements" 

 

def unpack_rdfs_list(list_head_uri, sparql_endpoint): 

    if list_head_uri == "http://www.w3.org/1999/02/22-rdf-syntax-ns#nil": return [] 

    sparql = SPARQLWrapper(sparql_endpoint) 

    sparql.setReturnFormat(JSON) 

    query = f"PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> SELECT 

?member WHERE {{ <{list_head_uri}> rdf:rest* / rdf:first ?member . }}" 

    sparql.setQuery(query) 

    results = sparql.query().convert()["results"]["bindings"] 

    return [item["member"]["value"] for item in results] if results else [] 

 

 

def doArbitraryAggregation(building_list_uri, arbitrary_unit_query): 

    print("Step 0: Unpacking the rdfs:List...") 

    building_uris = unpack_rdfs_list(building_list_uri, SPARQL_QUERY_ENDPOINT) 

    if not building_uris: 

        print("  -> Input list is empty or invalid. Nothing to aggregate.") 

        return "http://www.example.com/data/areainterest/EmptyResultTargetZone" 

    print(f"  -> Found {len(building_uris)} buildings to aggregate.") 

 

    sparql = SPARQLWrapper(SPARQL_QUERY_ENDPOINT) 

    sparql.setReturnFormat(JSON) 

    sparql.setMethod(POST) 
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    # First, get the target zone URI from its query 

    sparql.setQuery(arbitrary_unit_query) 

    target_zone_results = sparql.query().convert()["results"]["bindings"] 

    if not target_zone_results: 

        raise ValueError("Arbitrary unit query returned no results.") 

    target_zone_uri = target_zone_results[0]['arbitraryUnit']['value'] 

 

    print(f"  -> Found Target Zone: <{target_zone_uri}>. Now fetching its geometry...") 

    get_geom_query = f""" 

    PREFIX geo: <http://www.opengis.net/ont/geosparql#>  

    SELECT ?wkt  

    WHERE {{  

        # First hop: from the Area of Interest to its Geometry Instance 

        <{target_zone_uri}> geo:hasGeometry ?geom . 

        # Second hop: from the Geometry Instance to the WKT literal 

        ?geom geo:asWkt ?wkt . 

    }} 

    """ 

    sparql.setQuery(get_geom_query) 

    geom_results = sparql.query().convert()["results"]["bindings"] 

    if not geom_results: 

        raise ValueError( 

            f"Could not find geometry for target zone <{target_zone_uri}>. Check that the 'geo:' prefix 

in your data file matches 'http://www.opengis.net/ont/geosparql#'.") 

 

    target_wkt = geom_results[0]['wkt']['value'] 

 

    print("Step 1 & 2: Spatially filtering buildings and summing population in SPARQL...") 

    values_clause = " ".join([f"<{uri}>" for uri in building_uris]) 

 

    aggregation_query = f""" 

    PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

    PREFIX geof: <http://www.opengis.net/def/function/geosparql/> 

    PREFIX bdasy: <http://www.example.com/ontology/buildingareadasy#> 

    SELECT (SUM(?pop) as ?totalPopulation) 

    WHERE {{ 

        VALUES ?building {{ {values_clause} }} 

        ?building geo:hasGeometry ?buildingGeom ; 

                  bdasy:hasDisaggregatedPopulation ?pop . 

        ?buildingGeom geo:asWKT ?buildingWKT . 

        BIND("{target_wkt}"^^geo:wktLiteral AS ?targetGeom) . 

        FILTER(geof:sfWithin(?buildingWKT, ?targetGeom)) 

    }} 



Appendices 

209 

    """ 

    sparql.setQuery(aggregation_query) 

    results = sparql.query().convert()["results"]["bindings"] 

 

    total_population = 0.0 

    if results and results[0].get("totalPopulation"): 

        total_population = float(results[0]["totalPopulation"]["value"]) 

 

    print(f"  -> Aggregated population in target zone: {total_population}") 

 

    update_sparql = SPARQLWrapper(SPARQL_UPDATE_ENDPOINT) 

    update_sparql.setMethod(POST) 

    insert_query = f""" 

    PREFIX bdasy: <http://www.example.com/ontology/buildingareadasy#> 

    INSERT DATA {{ <{target_zone_uri}> bdasy:hasAggregatedPopulation 

"{total_population}"^^xsd:double . }} 

    """ 

    update_sparql.setQuery(insert_query) 

    update_sparql.query() 

 

    print("  -> Final data inserted successfully.") 

 

    return target_zone_uri 

 



 

210 

CURRICULUM VITAE 
 

Karlo Kević, born in 1994 in Split, Croatia graduated the Technical School of 

Construction and Geodesy and gained a qualification of Land Surveying Technician in 

2013. After finishing bachelor studies at Faculty of Civil Engineering, Architecture and 

Geodesy at University of Split in 2016, he obtained master’s degree in geodesy and 

geoinformatics at Faculty of Geodesy, University of Zagreb in 2019. Following upon his 

studies, he started his professional career by enrolling in doctoral study at Faculty of 

Geodesy in 2019 while working as teaching and research assistant at Chair of 

Geoinformation. In the scope of his work position, he participates in several teaching 

courses at bachelor and master level and at the same time was actively involved in 

Erasmus and Horizon scientific projects as an early-stage researcher. 

Throughout his professional career to date, he participated and presented at several 

national and international scientific conferences. Adjacent to that he is author of several 

scientific papers published in international journals and conference proceedings. 


